
693.13 Using Timer1 to calculate RPM. .
673.12 Using the CCP Input to Measure a Pulse. .
653.11 Fixed Point Arithmetic. .
613.10 Using the Bus Routines to Control an LCD module .
583.9 Using a 3-wire interface to control tons of LEDs .
533.8 Connecting with Other Resources via I2C .
513.7 Using Protean's I2C Xtender IC for more resources .
463.6 Reading and Debouncing Switches. .
453.5 Closed Loop Circuit Feedback in Control Circuits .
423.4 Controlling relays for motor direction and electric braking .
393.3 A simple PWM circuit for controlling a low voltage DC motor. .
383.2 Construction techniques and power sources .
363.1 A simple program to blink an LED .

3 Simple Examples
352.15 Check out the the Protean Web Site .
352.14 What's Next? .
352.13 Captain, I think the functions are overload'n! .
322.12 A device driver library for the LTC1298 (12bit A/D) .
312.11 Functions, parameters, and exit value .
302.10 Variable Arrays and Indirection .
292.9 Variables, Global vs Local and precious RAM space .
282.8 Allocation Constants and Field Names .
272.7 String constants and implicit allocation .
272.6 Using DEFINES and Constant Operators .
262.5 Constants, constants, and more constants .
252.4 FBASIC line syntax (labels, remarks, conditionals) .
252.3 A more elegant "first.bas" .
232.2 A word about libraries .
232.1 Dissecting the sample program, "first.bas" .

2 FBasic Anatomy
221.9 What next? .
211.8 The TICkit development cycle: The standard routine .
211.7 If you are having trouble .
201.6 Downloading the program: Getting the program inside the TICkit .
181.5 Loading a program into the IDE .
171.4 Connecting the Download Cable .
151.3 Getting Acquainted with Your TICkit. .
141.2 Overview of the process .
141.1 The Goal Here is "Instant Gratification" .

1 Getting Started
12Technical Support .
12Limited Warranty .
12Single User License Agreement .
12Manual Version and accuracy (revision H) .

Legal and License Information

FBasic TICkit Table of Contents

Protean Logic Inc. 1

875.3 Additional Libraries Summary .
865.2 Standard Library Summary .
865.1 Standard Libraries: "....What do they contain, Books?" .

5 Standard Function Library
85WHILE .
85WATCH .
85VECTOR .
85TYPE .
85SIZE .
84SEQUENCE .
84RETURN .
84REPEAT .
84RECORD .
83PROTOTYPE .
83PARAMETER .
83OPERATION .
83MEMORY .
82LOCAL .
82LIBRARY .
82KEYWORD .
82INTERNALS .
82INITIAL .
81INCLUDE .
81IFNOTDEFINED .
81IFDEFINED .
81IF .
81GOTO .
80GOSUB .
80GLOBAL .
80FUNCTION .
80FIELD .
79EXIT .
79EQUIVALENT .
79DEFINITION .
79CALL .
79BREAK .

BRANCH .
79ANOTE .
78ALLOCATE .
78ALIAS .
774.1 Keywords; Are they commands or what? .

4 FBasic Keywords
753.16 Example Summary .
733.15 Using the RSB509 to Receive RS232 in Background. .
703.14 Interfacing to RS232 devices. .

Table of Contents FBasic TICkit

2 Protean Logic Inc.

94== Multi-precision relational test for equal .
945.7 LOGICAL and RELATIONAL TEST FUNCTIONS .
93set_high_nibble Set the high nibble in a byte .
93set_low_nibble Set the low nibble in a byte .
93get_high_nibble Get the high nibble in a byte .
93get_low_nibble Get the low nibble in a byte .
93<< 8 and 16 bit arithmetic shift argument to the left .
93>> 8 and 16 bit arithmetic shift argument to the right .
93b_test Tests bits in an 8 or 16 bit field by mask .
93b_clear Clear bits in an 8 or 16 bit field by mask .
92b_set Set bits in an 8 or 16 bit field by mask .
92b_NOT 8 or 16 bit Bitwise logical complement function .
92b_XOR 8 or 16 bit Bitwise logical exclusive or function .
92b_OR 8 or 16 bit Bitwise logical OR function .
92b_AND 8 and 16 bit Bitwise logical and function .
925.6 BIT MANIPULATION FUNCTIONS .
92math_errclear Clear all floating point math errors. .
91math_anyerror Test for any floating point math error .
91math_divzero Test for a floating point math divide by zero error .
91math_underflow Test for a floating point math underflow .
91math_overflow Test for a floating point math overflow .
91log2 Return integer logarithym, base 2, for the argument (63, 74 only) .
90exp2 Return value of 2 raised the argument (63, 74 only) .
90% Arithmetic Modulus or Remainder (Integer) .
90/ Arithmetic Division - 32 bit Floating Point Division .
90/ Arithmetic Division (Integer) .
90* Arithmetic Product - 32 bit Floating Point Product .
90* Arithmetic Product (Integer) .
89-- Decrement by One .
89- Arithmetic Inverse (Floating point change sign) .
89- Arithmetic Difference - 32 bit Floating Point Aguments .
89- Arithmetic Inverse (Integer change sign) .
89- Arithmetic Difference (Integer) .
89++ Increment by One .
89+ Arithmetic Sum - 32bit floating point .
89+ Arithmetic Sum (Integer) .
885.5 Mathematical Functions (Integer Functions) .
88to_float Converts a Long integer to a 32 bit floating point format .
88TO_LONG Extends an (argument) to long size .
88TO_WORD Extends a smaller size to a word .
88trunc_long Truncates a 32 bit floating point to a long integer .
88TRUNC_WORD Truncates a larger size to a word .
88trunc_byte Truncates a larger size to a byte .
87= Assignment .
875.4 Assignment and Size Conversion Functions .

FBasic TICkit Table of Contents

Protean Logic Inc. 3

102ee?_read_word Reads a word from one of the four EEprom banks. .
101ee?_read_byte Reads a byte from one of the four EEprom banks. .
101EE_READ Read a byte at EEprom address (compatible with 62) .
1005.9 EEprom Routines (Pointer Dereferencing) .
100RC_MEASURE Measure the resistance/capacitance at a pin .
100square_out OUTPUT A SYMETRICAL SQUARE WAVE .
100ppm Pulse Period Modulation output. .

99CYCLES Generate square wave cycles on a pin (NOT RTC compatible) .
99time_to_high Makes pin an input and Measures time to low input .
99time_to_low Makes pin an input and Measures time to low input .
99PULSE_OUT_HIGH Genereate a high pulse on a pin .
99PULSE_OUT_LOW Generate a low pulse on a pin .
99PULSE_IN_HIGH Measure duration of a high pulse .
98PULSE_IN_LOW Measure duration of a low pulse .
98vtris_set Set tristate levels for the voltage measure port (A toD) .
98sptris_set Set tristate levels for special purpose port .
98DTRIS_SET Set tristate levels for data pins .
98ATRIS_SET Set tristate levels for address pins .
98vtris_get Get status of the voltage measure port (A toD) tristate levels .
98sptris_get Get status of special purpose port tristate levels .
98DTRIS_GET Get status of data pin tristate levels .
98ATRIS_GET Get status of address pin tristate levels .
98vport_set Set pin levels of the voltage measure port (A toD) .
97spport_set Set pin levels of special purpose port .
97DPORT_SET Set pin levels of data port .
97APORT_SET Set pin levels of address port .
97vport_get Get byte representing pin levels of the voltage measure port (A toD)
97spport_get Get byte representing pin levels of special purpose port .
97DPORT_GET Get byte representing pin levels of data port .
97APORT_GET Get byte representing pin levels of address port .
97pin_test Return the logic level of a pin .
97PIN_IN Make pin an input and return logic level .
97pin_off Make pin a Hi-Z output (turn off all output transistors) .
96PIN_LOW Make pin a low logic output .
96PIN_HIGH Make pin a high logic output .
965.8 INPUT and OUTPUT FUNCTIONS .
96eval Convert value to a logical byte. If arg is zero, returns 0 if not returns 255
96not Perform logical NOT on a byte .
96or Perform logical OR conjunction on two bytes .
95and Perform logical AND conjunction on two bytes .
95<> Multi-precision relational test for not equal .
95< Multi-precision relational test for less than .
95> Multi-precision relational test for greater than .
95<= Multi-precision relational test for less than or equal .
94>= Multi-precision rel. test for greater than or equal .

Table of Contents FBasic TICkit

4 Protean Logic Inc.

110rs_conparam_set Set the serial parameter for console functions .
110rs_rxparam_set Set the serial parameter for receive functions .
110rs_txparam_set Set the serial parameter for transmit functions .
110rs_extrarate_set Set the divisors for a Custom Baud Rate .
110RS_PARAM_SET Set RS232 parameters .
1095.13 RS232 AND COMMUNICATIONS Emulation FUNCTIONS .
108RTCC_WAIT Wait until RTCC count rolls over to zero .
108RTCC_COUNT Count while delaying for milliseconds .
108RTCC_EXT_FALL RTCC source is external clock .
108RTCC_EXT_RISE RTCC source is external clock .
108RTCC_INT_256 RTCC source internal and prescaled by 256 .
108RTCC_INT_16 RTCC source internal and prescaled by 16 .
108RTCC_INT RTCC source is internal clock .
108rtcc_option_get Get the OPTION register of the processor (TICkits 63, 74)
108rtcc_option_set Set the OPTION register of the processor (TICkits 63, 74)
107RTCC_SET Set the count of the RTCC register .
107RTCC_GET Get the current count of the RTCC register .
107SLEEP Delay processing and conserve power for a time (not RTC compatible)
107DELAY Delay processing for milliseconds .
1075.12 TIMING AND COUNTING FUNCTIONS .
106lcd_fmt Writes a formatted long to the LCD .
106lcd_out Writes a number to the LCD .
106lcd_string Writes a string to the LCD .
106lcd_out_char Writes a byte to LCD data register .
106lcd_data_wr Writes a byte to LCD data register .
106lcd_cont_wr Writes a byte to LCD control register .
106lcd_init8 Initializes an LCD module for 8 bit data bus .
106lcd_init4 Initializes an LCD module for 4 bit data bus .
106BUSs_WRITE Write byte to bus address .
106BUSs_READ Read a byte from bus address .
105BUSs_SETUP Setup address and data pins for bus I/O .
1055.11 Parallel BUS and LCD FUNCTIONS .
104i2c_read_word Read a word from an addressed device (TICkit 63 or 74 only)
104i2c_read Read a byte from an addressed device .
104i2c_write Write a command and data byte to bus (Byte only in TICkit 62)
1035.10 IIC PERIPHERAL FUNCTIONS .
103ee_array_size Calculate Address of an array element (used internally) .
103ee_array_long Calculate Address of a long array element (used internally)
102ee_array_word Calculate Address of a word array element (used internally)
102ee_array_byte Calculate Address of a byte array element (used internally)
102ee?_write Writes a value of the parameter size to one of the four EEprom banks
102EE_WRITE Write a byte to EEprom address (Compatible with TICkit 62)
102EE_READ_long Read a long at EEprom address (TICkit 62) .
102EE_READ_word Read a word at EEprom address (TICkit 62) .
102ee?_read_long Reads a long from one of the four EEprom banks. .

FBasic TICkit Table of Contents

Protean Logic Inc. 5

118con_out_float Sends a floating point value to the console (TICkits 63, 74)
118CON_OUTx Sends a numeric value to the console, display in Hexidecimal
118CON_OUT Sends a numeric value to the console, display in decimal .
117CON_OUT_CHAR Send a byte character to the console .
117con_in_float Get a floating point value from the console (TICkits 63, 74)
117CON_INx_long Get a hexidecimal long from the console (TICkits 63, 74)
117CON_INx_WORD Get a hexidecimal word from the console (TICkits 63, 74)
117CON_INx_BYTE Get a hexidecimal byte from the console (TICkits 63, 74)
117CON_IN_long Get a long from the console (TICkits 63, 74) .
117CON_IN_LONG Get a long from the console (TICkit57 only) .
117CON_IN_WORD Get a word from the console (TICkits 62, 63, 74) .
117CON_IN_WORD Get a word from the console (TICkit57 only) .
117CON_IN_BYTE Get a byte from the console (TICkits 62, 63, 74) .
116CON_IN_BYTE Get a byte from the console (TICkit57 only) .
116CON_IN_CHAR Get a character from console (TICkits 62, 63, 74) .
116CON_IN_CHAR Get a character from console (TICkit57 only) .
116CON_TEST Test for the existance of a console .
1165.15 CONSOLE FUNCTIONS .
116sci_reg_set Set SCI Transmit Data .
116sci_baud_set Set SCI Baud Rate Divisor value .
116sci_txsta_set Set SCI Transmitter status .
116sci_rxsta_set Set SCI Receiver status .
115sci_reg_get Get SCI Received Data .
115sci_baud_get Get SCI Baud Rate Divisor value .
115sci_txsta_get Get SCI Transmitter status .
115sci_rxsta_get Get SCI Receiver status .
1145.14 RS232 Hardware Peripheral Functions .
114rs_fmt Sends a formatted long out RS232 pin .
114RS_STOP_IGNORE Set RS232 stop bit protocol off .
114RS_STOP_CHEK Set RS232 stop bit protocol on .
113RS_DELAY Delay one and one half RS232 bit times .
113rs_string Send a string of bytes out RS232 pin .
113rs_scanf Scan a stream of RS232 characers and extract fields (TICkit 63 & 74)
112RS_RECblock Receive array of bytes in RS232 pin (TICkit 62 only) .
112RS_RECEIVE Receive byte in RS232 pin (TICkits 62, 63, 74) .
112RS_RECEIVE Receive byte in RS232 pin (TICkit57 only) .
112RS_SEND Send byte out RS232 pin (TICkits 62, 63, 74) .
112RS_SEND Send byte out RS232 pin (TICkit57 only) .
111RS_break Send RS232 break condition .
111RS_dbPARAM_GET Get serial parameter for debug functions .
111RS_conPARAM_GET Get serial parameter for console functions .
111RS_rxPARAM_GET Get serial parameter for receive functions .
111RS_txPARAM_GET Get serial parameter for transmit functions .
111RS_PARAM_GET Get RS232 parameters .
110rs_dbparam_set Set the serial parameter for debug functions .

Table of Contents FBasic TICkit

6 Protean Logic Inc.

128rtc_intdiv_set Sets the interval for the periodic RTC interrupt .
127rtc_cont_get Get the contents of the RTC control register .
127rtc_cont_clr Clear bits in the RTC control register accorging to the mask .
127rtc_cont_set Set bits in the RTC control register according to the mask .
1265.23 The RTC background timing functions .
126d1wire_sendlow Generates a window pulse and sends a low level on the bus
126d1wire_sendhigh Generates a window pulse and sends a high level on the bus
126d1wire_read Generates a window pulse and returns the bit level on the bus
126d1wire_reset Generates the 500us reset pulse and returns the presence pulse
1265.22 Dallas Semiconductor (TM) 1-wire buss support .
126freq_gen4 Generate an analog output composed of four sine waves. .
125freq_gen2 Generate an analog output composed of two sine waves. .
125freq_gen1 Generate an analog output composed of a single sine wave. .
1255.21 The Frequency Output functions (synthesized SIN Waves) .
125keybdport_in Get a status code or scan code from the PCAT keyboard interface.
125keybdport_out Send a status or command code to a PCAT keyboard. .
1245.20 The PC keyboard interface functions .
124rot_encoders Maintains the count/position of two rotary encoders .
1245.19 Rotary encoder function. .
122 servos Controls up to 4 Radio Control Style (PPM) electro-mechanical servos.
1225.18 RC Servo Control Functions (Pulse Purportional Modulation). .
122x10_recv Receives an X-10 packet off the power line .
122x10_immcomm Sends a command to a unit without the usual 3 cycle delay
122x10_comm Sends commands to a listning unit in a house .
121 x10_unit Used to "wake up" a specific unit in a house to receive commands
121x10_recvpins_get Get the Clock and Recv pins for x10 the receive function
121x10_xmitpins_get Get the Clock and Xmit pin for x10 transmit functions
121x10_recvpins_set Set the Clock and Recv pin for the x10 receive function
121x10_xmitpins_set Set the Clock and Xmit pin for x10 transmit functions
1205.17 Home Automation X-10 Protocol Power Line Carrier Control functions.
120playbacki2-5-? Interruptable Audio Playback from EEprom (32 period on CCP2)
120playback2-5-? Playback Audio Info in EEprom using 32 count period on CCP2
120playbacki1-5-? Interruptable Audio Playback from EEprom (32 period on CCP1)
120playback1-5-? Playback Audio Info in EEprom using 32 count period on CCP1
120playbacki2-7-? Interruptable Audio Playback from EEprom (128 period on CCP2)
120playback2-7-? Playback Audio Info in EEprom using 128 count period on CCP2
120playbacki1-7-? Interruptable Audio Playback from EEprom (128 period on CCP1)
119playback1-7-? Playback Audio Info in EEprom using 128 count period on CCP1
119playbacki2-8-? Interruptable Audio Playback from EEprom (256 period on CCP2)
119playback2-8-? Playback Audio Info in EEprom using 256 count period on CCP2
119playbacki1-8-? Interruptable Audio Playback from EEprom (256 period on CCP1)
119playback1-8-? Playback Audio Info in EEprom using 256 count period on CCP1
1185.16 Audio Playback Functions .
118con_fmt Sends a formatted long to the console .
118con_string Send a string of bytes out console pin .

FBasic TICkit Table of Contents

Protean Logic Inc. 7

134tmr2_cont_get Gets TMR2 control register (TICkits 62, 63, 74) .
134tmr2_cont_set Sets TMR2 control register (TICkits 62, 63, 74) .
134tmr1_count_get Gets TMR1 count (TICkits 62, 63, 74) .
134tmr1_count_set Sets TMR1 count (TICkits 62, 63, 74) .
134tmr1_cont_get Gets TMR1 control register (TICkits 62, 63, 74) .
133tmr1_cont_set Sets TMR1 control register (TICkit 62, 63, 74) .
1335.25 Peripheral Control Functions .
133int_mask2_get Gets Second Peripheral Mask byte (TICkits 63, 74) .
133int_mask2_set Sets Second Peripheral Mask byte (TICkits 63, 74) .
132int_mask_get Gets Peripheral Mask byte (TICkits 62, 63, 74) .
132int_mask_set Sets Peripheral Mask byte (TICkits 62, 63, 74) .
132int_flag2_get Gets Second Peripheral Flag byte (TICkits 63, 74) .
132int_flag2_set Sets Second Peripheral Flag byte (TICkits 63, 74) .
132int_flag_get Gets Peripheral Flag byte (TICkits 62, 63, 74) .
132int_flag_set Sets Peripheral Flag byte (TICkits 62, 63, 74) .
131int_cont_get Gets control byte for global_int (TICkit62) .
131int_cont_set Sets control byte for global_int (TICkit62) .
131RESET Resets the token interpreter .
131IRQ_OFF Turn interrupt sensing off .
131IRQ_ON Turn interrupt sensing on .
131DEBUG_OFF Turn debug protocol off .
131DEBUG_ON Turn debug protocol on .
131tickit_version Get the TICkit version and identification number (TICkits 63, 74)
130no_operation No Operation - Waste 1 EEprom byte and 1 token fetch time.
1305.24 SYSTEM, Interrupt AND MISCELLANEOUS FUNCTIONS .
130rtc_swait2 Wait until specified long interval from mark2 has elapsed .
130rtc_swait1 Wait until specified long interval from mark1 has elapsed .
129rtc_lwait2 Wait until specified long interval from mark2 has elapsed .
129rtc_lwait1 Wait until specified long interval from mark1 has elapsed .
129rtc_sinterval2 Test if specified short interval has elapsed since mark2 .
129rtc_sinterval1 Test if specified short interval has elapsed since mark1 .
129rtc_linterval2 Test if specified long interval has elapsed since mark2 .
129rtc_linterval1 Test if specified long interval has elapsed since mark1 .
129rtc_mark2 Internal capture and stores current RTC count in mark2 .
129rtc_mark1 Internal capture and stores current RTC count in mark1 .
129rtc_report Gets the full RTC count (CLK count, TIC count, seconds count)
128rtc_timer_get Gets the 32bit count of elapsed time intervals (RTC_TIMER)
128rtc_timer_set Sets the 32bit count of elapsed timer intervals (RTC_TIMER)
128rtc_sectic_get Gets the count of elapsed tics for the current timer interval .
128rtc_sectic_set Sets the count of elapsed tics for the current timer interval .
128rtc_secdiv_get Gets the interval for the 32bit elapsed time counter .
128rtc_secdiv_set Sets the interval for the 32bit elapsed time counter (RTC_TIMER)
128rtc_inttic_get Gets the elapsed tic count for the RTC periodic interrupt .
128rtc_inttic_set Sets the elapsed tic count for the RTC periodic interrupt .
128rtc_intdiv_get Get the interval for the periodic RTC interrupt .

Table of Contents FBasic TICkit

8 Protean Logic Inc.

156A.2 Multi-drop connection of multiple TICkits. .
155A.1 Download Cable(s) .

Appendix A: Circuits
1537.6 Debug Strategies .
1537.5 Using the Value Examine and Modify Window .
1527.4 The Watch Point Selection Window .
1517.3 The Break Point Selection Window .
1507.2 The Debug Window Menu Selections .
1497.1 The Elements of Debugging and the Debug Window .

7 The TICkit IDE Debug Window
1486.8 TICkit IDE Program Distribution .
1486.7 The WAV to INC conversion utility .
1476.6 Compiling and Debugging .
1476.5 Setting the Options .
1466.4 Using the Pop-Up Menus .
1456.3 The Main Edit Window Menu .
1446.2 The Main TICkit IDE Edit Window .
1446.1 What is the TICkit IDE? .

6 The TICkit IDE Program
1395.27 Constant Symbols Defined in Libraries .
139a2d_control1_get Gets the A/D control1 register contents (TICkit 74) .
139a2d_control1_set Sets the A/D control1 register (TICkit 74) .
138a2d_control0_get Gets the A/D control0 register contents (TICkit 74) .
138a2d_control0_set Sets the A/D control0 register (TICkit 74) .
138a2d_result_get Gets the result of an A/D conversion (TICkit 74) .
1385.26 Analog to Digital Conversion Peripheral Functions (74 only) .
136ssp_status_get Gets SSP Status (TICkits 62, 63. 74) .
136ssp_addr_get Gets SSP Address (TICkits 62, 63, 74) .
136ssp_addr_set Sets SSP Address (TICkits 62, 63, 74) .
136ssp_buffer_get Gets SSP Buffer (TICkits 62, 63, 74) .
136ssp_buffer_set Sets SSP Buffer (TICkits 62, 63, 74) .
136ssp_cont_get Gets SSP control register (TICkits 62, 63, 74) .
135ssp_cont_set Sets SSP control register (TICkits 62, 63, 74) .
135ccp2_reg_get Gets CCP2 register (TICkits 63, 74) .
135ccp2_reg_set Sets CCP2 register (TICkits 63, 74) .
135ccp2_cont_get Gets CCP2 control register (TICkits 63, 74) .
135ccp2_cont_set Sets CCP2 control register (TICkits 63, 74) .
135ccp1_reg_get Gets CCP1 register (TICkits 62, 63, 74) .
135ccp1_reg_set Sets CCP1 register (TICkits 62, 63, 74) .
135ccp1_cont_get Gets CCP1 control register (TICkits 62, 63, 74) .
134ccp1_cont_set Sets CCP1 control register (TICkits 62, 63, 74) .
134tmr2_period_get Gets TMR2 period register (TICkits 62, 63, 74) .
134tmr2_period_set Gets TMR2 period register (TICkits 62, 63, 74) .
134tmr2_count_get Gets TMR2 count (TICkits 62, 63. 74) .
134tmr2_count_set Sets TMR2 count (TICkits 62, 63, 74) .

FBasic TICkit Table of Contents

Protean Logic Inc. 9

179F.14 1/100, 1/10, 1, and 10 second time base .
179F.13 The Real Time 32 bit seconds counter .
179F.12 CCP modules for 10bit dedicated PWM .
179F.11 16 bit Event Counter or Oscillator based timer .
179F.10 A/D Module .
178F.9 General Purpose PWM module .
178F.8 Serial Communications Module .
178F.7 Stepper Driver Module .
178F.6 Xtender commands .
177F.5 Xtender Example Schematic and Program .
176F.4 Xtender Connection and Command (I2C) Protocol .
175F.3 Xtender Product Features .
175F.2 Xtender X73J-Ix Pin Diagram .
175F.1 Xtender Product Overview .

The X73 Xtender IC: I/O Expansion, RAM expansion, RS232 hardware, PWM, and Stepper Control
174E.7 Example control program for a parallax STAMPII .
174E.6 Example connection to parallax STAMPII .
173E.5 Example TICkit Control Program .
173E.4 Example Connection to TICkit Schematic .
172E.3 RSB509C pin diagram .
172E.1 RSB509 Product Overview .

The RSB509C-0 and RSB509C-1: Serial Buffer IC
171D.12 TICkit 63/74 Laboratory Pictoral Template (Photocopy for layout worksheet)
170D.11 TICkit 63/74 LAB PCB and resources available to the application designer
169D.10 TICkit 63/74 LAB Connection Points and Interconnection Methods
169D.9 TICkit 63/74 LAB Design Concepts .
168D.8 The TICkit 74 Laboratory Schematic .
168D.7 The TICkit 63 Laboratory Schematic .
167D.6 The TICkit 63 Single Board Computer Schematic .
167D.5 The TICkit 63 Project Board Schematic .
166D.4 The TICkit 63 Module Schematic .
166D.3 The TICkit 63 and 74 IC pin diagrams .
165D.2 The TICkit 63 Module pin diagram .
165D.1 The TICkit 63 and 74 Hardware Overview .

Appendix D: TICkit 63 Hardware
163C.4 Making your own layout using the 28 pin IC .
163C.3 The TICkit 62 Module and IC pin diagrams .
162C.2 TICkit 62 Project Board Schematic .
161C.1 TICkit 62 Schematic (40 pin module) .

Appendix C: TICkit 62 Hardware
160B.3 Component Placement Diagram .
160B.2 TICkit57 Specifications .
159B.1 FBASIC TICkit57 schematic diagram .

Appendix B: TICkit 57 Hardware
157A.3 The RC measurement Circuit .

Table of Contents FBasic TICkit

10 Protean Logic Inc.

183F.21 Sample Program and Schematic .
182F.20 Xtender command summary. (consult the xtn73_g.lib file for symbolic names)
180F.19 Coding Example using a Header file .
180F.18 Xtender Implementation Limits .
180F.17 General Purpose Input and Output .
180F.16 Static Random Access Memory .
179F.15 Trigonometric Tables .

FBasic TICkit Table of Contents

Protean Logic Inc. 11

Legal and License Information
Manual Version and accuracy (revision H)
This is TICkit Manual revision H. All information in this manual is believed to be correct at the time of publication.
However, as with any product documentation, there may be unintentional errors or omitted information. Protean will
periodically update this manual and updates are available on-line at the Protean Logic Inc. web site. Feel free to
download future copies. Printed versions of this and future manuals are available as well for modest cost.

Single User License Agreement
Protean Logic inc. Grants use of the TICkit IDE program under the following terms. Protean Logic inc. has expressed
these terms in plain English so that anyone can easily understand them.

1. The TICkit IDE program and concepts contained in it remain the property of Protean Logic inc. All copyright
privileges are retained by Protean Logic Inc.

2. Users who are unlicensed, those who have not paid a license fee for the TICkit IDE, may use the TICkit IDE to
maintain, compile, and download programs. They may not use the TICkit IDE to develop new programs or to
extensively modify existing programs. The use granted here is for reasonable support of programs supplied to
the unlicensed user through products or construction articles.

3. Users who have paid a license fee, may use all features of the TICkit IDE both for maintenance as well as new
program development.

4. Licensed users may utilize this program on multiple computers, provided that only the licensed user is using the
TICkit IDE for development.

5. Organizations which license the TICkit IDE may allow one developer use of the TICkit IDE at any one time.
However, the program may be made available to multiple users provided only one person will be using the
TICkit IDE to development new programs at one time.

6. Protean Logic inc. prohibits customers from disassembling or technically analyzing the TICkit IDE. If a user has
questions about how something is accomplished in the TICkit IDE, Protean Logic inc. will supply the
information provided no trade secrets are contained in the information. Protean Logic inc. will make this
determination.

7. Licensed users may distribute the TICkit IDE software to anyone willing to abide by the terms of this license.

The FBasic™ Language, Compiler, and associated Tools are protected under United States copyright law.

Limited Warranty
Protean Logic warrants the disks and materials contained in the development kit free from defects in materials or
workmanship for a period of 30 days from the date of purchase. If, in this time the disks are found to be defective, they
may be returned to Protean Logic for replacement. Protean will refund the purchase price of complete and undamaged
development kits at the customers demand if such demand is made within 30 days from the date of purchase.

Protean Logic makes no representations or warranties as to the merchantability or fitness of this product to a particular
purpose. Products developed with the development kit should not be used in a life support application without express
written agreement with Protean. Protean makes no other warranty, either expressed or implied.

Technical Support
Protean Logic maintains an internet web site for all customers. Software updates are available from the Protean to all
customers. Simply e-mail "support@protean-logic.com" and provide the invoice number and date of purchase in your
message. We will e-mail you a reply with an attachment of the latest software. The URL for the Protean Logic web site is,
"http: //www.protean-logic.com".

You can reach technical support at (303) 828 9156. Our FAX number is (303) 828-9316.

Legal Notices FBasic TICkit

12 Protean Logic Inc.

Properties

© 1995-2000 by Protean Logic Inc. All rights reserved.

FBASIC and Protean Logic are trademarks owned by Protean Logic Inc. All other trademarks contained in this manual
are the property of their respective holders

FBasic TICkit Legal Notices

Protean Logic Inc. 13

1 Getting Started
1.1 The Goal Here is "Instant Gratification"
In this chapter you learn how to install and use the Protean Logic Inc. Windows® Integrated Development Environment
(IDE) that is provided on the CD-ROM you receieved with your order. You learn how to connect the download cable
from your computer to a TICkit device and use the IDE to compile, download, and execute a sample program. To do this
you will need a TICkit circuit board, an IBM compatible computer with at least 16 Megabytes of available memory
(RAM), one free serial port, the download cable. A diagram of this cable is shown in Appendix A of this manual if you
need to make another for some reason.

Throughout this manual, the IBM computer is referred to as the "Console". Downloading refers to the process of copying
a program from the console to the TICkit's EEprom.

"Debugging" refers to the process of watching the TICkit execute program lines or program sections, interactively. This
is accomplished with the IDE while connected to a TICkit via the download cable. The IDE will step though program
lines allowing you to examine variables and program flow. This information enables you to verify that your program is
doing what you intended.

1.2 Overview of the process
1. Install the software (you may have already done this to be able to read this information). If not, insert the

supplied CD in your CD-ROM Drive and execute the installation program. This program usually starts
automatically when the CD is inserted. If it does not start automatically, click START, then RUN, then
BROWSE and locate the "setup.exe" file on the CD. NOTE: If you are intending to use the DOS only version of
the TICkit tools, you need to follow the instruction in the DOS TOOLS manual located on our website and on
the CD under the name "TICDEVDO.PDF". The following instructions apply only to the windows IDE.

2. Locate the download cable (or make it if you choose to do so) and attach it to a serial port on your computer
and the two or four pin download socket on the TICkit Module (4-pin sockets have reset capability not
supported by the standard download cable, plug the standard cable into the two adjacent open positions of the
4-pin socket). (See 1.4 Connecting the Download Cable for more information)

3. Connect power to the TICkit. If you purchased a project board, plug in the wall adapter in it's socket. If you are
using the module in your own prototype, you will need to supply regulated 5 Vdc to the appropriate pins on the
TICkit.

4. Run the TICkit IDE on the console computer.
5. Click the OPTIONS menu item and select the serial port radio button representing the port where you connected

the download cable.
6. Click the FILE menu item and click the OPEN PRIMARY selection. A dialog box appears where you will select

the source file (Program) that you want to use. In the case of this example, the program will be called
"first63.bas".

7. Click the RUN menu item and click the COMPILE and DEBUG selection. At this point the IDE will open a
compile dialog box and report the results. Click OKAY to continue. The IDE will open the Debug Dialog and
wait.

8. Reset the TICkit by pressing the reset button on the T63 device board or by removing and re-applying power to
the TICkit module. If everything is working, The phrase "Connected to TICkit..." will appear in the Debug
Dialog box and some numbers will appear in the status bar at the bottom of the debug dialog. The status bar will
look somthing like:
 Program Name: First63.bas Loaded: TKN & SYM MP:00 SP:7F PC:00E0 TR:FF

9. Click the PROGRAM menu item and click DOWNLOAD CURRENT selection. The IDE will transfere the
program from the console into the TICkit's EEprom memory.

10. Click the RUN menu item (be sure and click RUN of the Debug Dialog not the Edit Window) and click the
EXECUTE selection. The TICkit runs the program and outputs the phrase "Hello World..." to the console.
Congratulations, you have just downloaded and executed your first program on a TICkit.

11. Reset the TICkit again by pressing the reset button or by removing and re-applying power to the TICkit.
12. Click the RUN menu item and click the MONITOR VERBOSE selection. This time the program will execute in

a debug mode. Each line of source code is displayed as the program executes. Variables set as watchpoints are
displayed as the program progresses.

1 Getting Started FBasic TICkit

14 Protean Logic Inc.

This demonstrates the complete development cycle of the TICkit system. After completing these steps you are framiliar
enough with the TICkit tools to begin writing your own programs and learning the FBasic language. If you wish to
experiment more with other sample programs, you can repeat the process above using other source files installed in your
TICkit IDE directory. The release CD has examples dealing with audio playback, X-10 powerline carrier control,
RC-servo control, A/D data acquisition, PCAT keyboard interfaces, LCD interfaces, and many others. Additional
examples can be found on the Protean Logic web site (http://www.protean-logic.com) in the Applications section.

1.3 Getting Acquainted with Your TICkit.
Because the TICkit IDE supports all versions of the TICkit, you need to identify the version you are using and locate the
appropriate diagram below.

The TICkit 63 or 74 are the latest versions of the TICkit product line. They are available in Modules, Labaratories,
Single board computers, or as individual interpreter ICs. TICkit 63 and 74 Diagrams:

The TICkit 63 Module

The TICkit 74 Prototyping LabThe TICkit 63 Single Board Computer

Connecting the Download Cable
Like the TICkit 63, the TICkit 62 is available in Modules, Laboratories, Single board computers, and as individual
interpreter ICs. TICkit 62 Diagrams:

FBasic TICkit Getting Started 1

Protean Logic Inc. 15

The TICkit 57 is no longer available but the TICkit IDE does support these devices. More info on the 57 is available on
our website under the Archive section.

MODULES: A module is a small PCB approximately the same size as a 40 pin dual in-line package (DIP). Only 32 of
these pins are actually used by the TICkit, the rest are reserved for possible use in the future TICkit products. The TICkit
modules can be plugged into a 40 pin DIP socket, a solderless breadboard, or into Protean's T62/63-PROJ project board.
The idea here is to allow projects to be built on inexpensive carrier boards and then to move the processor modules from
project to project. The download socket for the module is a vertical 2-pin socket located at the bottom of the module next
to the socketed EEprom. The ground pin (striped wire) is the lower pin but no damage is done by reversing the polarity.
The module is powered through the pins of the module. Consult the pin-out diagram for connection information. The
download connection is also available through the DIP pins. If a T62/63-PROJ carrier board is used, plug the module into
the 40pin DIP socket and plug power in the adapter jack on the left side of the board or solder a 9 volt battery plug in the
holes provided and connect a battery.

LABORATORIES: Protean Logic Inc. offers prototyping laboratories which are a solderless breadboard attached to a
TICkit processor PCB. These are availabe in TICkit 62, 63, and 74 based versions and provide a convenient platform for
prototyping or education projects. The PCBs provide a +5 volt regulated power supply as well as +/- 9 volt unregulated
supplies for RS232 or split supply analog circuitry. Also included on the PCB is an RS232 connector and line buffer,
socketing for up to 128K bytes of EEprom, and a PCAT keyboard connector. The PCB has a personality factor processor
socket which accepts the 62, 63 or 74 TICkit processor ICs. The labratories also include a collection of interconnection
wires and an assortment of common passive components. The standard download cable should be plugged into the right
two positions of the 4-pin download socket with the ground (striped wire) on the left. The 4-pin socket is designed for
future cable enhancements.

SINGLE BOARD COMPUTERS: The Single Board Computer (SBC) is primarily designed for permenant projects. It
includes the basic 62 or 63 TICkit circuit as well as a +5 volt power supply. Pads are provided for point to point
soldering or wire wrap circuit fabrication. Pad patterns for an additional TICkit or Xtender IC are also provided. The
SBC has a 4-pin download socket which accepts the standard download cable in the upper two positions. The ground
(striped wire) of the cable should be to the bottom.

PROJECT BOARDS: These printed circuit boards do not include a TICkit processor. They are very similar to the SBC
however the area for the TICkit processor is replaced with a 40 pin DIP socket which accepts the TICkit module of your
choice.

INTERPRETER IC'S: These are 28 or 40 pin DIP ICs provided for production purposes. Power connection and
download connection are determined by the users design.

1 Getting Started FBasic TICkit

16 Protean Logic Inc.

9vdc
connector

or
>5.6vdc
adapter

Reset Button

Prototype
Area

40pin DIP
socket for

TICkit62 or
TICkit74

Download 2-pin
Socket (Gnd on

bottom)

1.4 Connecting the Download Cable
Connect the Download cable to a free serial port on the console computer. The download cable connector has a 9 pin D
connector for a 9 pin serial port. If your computer has only a 25 pin connector, a 9 to 25 pin adapter (like Radio Shack #
276-1548) will work fine. A 25 pin female connector may be wired according to the download circuit shown in appendix
'A' of this manual. Plug the two pin connector of the download cable into the download socket of your TICkit device,
usually labeled, "DL". The "DL" sockets for standard download cables are not polarized, so it is possible to plug the
cable incorrectly into the TICkit. If the cable is inserted incorrectly, the IDE will not be able to communicate with the
TICkit, however, no damage will occur. Unplug and then re-plug the Download cable.

Once the power and download cables are properly connected, you need to set the TICkit IDE serial port option. Start the

TICkit IDE program on the console computer. Click the OPTION menu item and select the correct radio button for the
COM port. Then click OK.

FBasic TICkit 1 Getting Started

Protean Logic Inc. 17

The following screen image shows the OPTIONS window with COM1 serial port selected.

1.5 Loading a program into the IDE
Sample programs are included with the TICkit IDE. We will use one of these programs called first63.bas to demonstrate
how to compile, download, and run a program. (If you do not have a TICkit 63 then use first62, or first74, or whatever
cooresponds to the TICkit device you have). Click FILE on the menu, click OPEN PRIMARY which takes you to the
open primary file dialog box. Select the first63.bas file and click OPEN. The source code for first63.bas program now
appears in the primary source edit area. At this point you could examine or modify the program. For our demonstartion,
do nothing to the program. The screen snap below should be similar to what you see.

NOTE: The primary file is the "program". FBasic allows you to use multiple files like libraries or include files
as reusable code blocks. These other files are called secondary files. You need to open the primary file to
compile the program. Secondary files do not need to be opened to compile or debug a program, but it can be
very useful to be able to view and edit secondary files at the same time that you work with the primary file.

1 Getting Started FBasic TICkit

18 Protean Logic Inc.

Now, compile the program into a file of tokens by clicking the RUN menu item, then click the COMPILE ONLY option.
A dialog box appears with the results of the compile shown similar to the screen snap below. When writing your
programs you will most likely get a list of errors in the compile dialog box. Rework the program and recompile until no
errors are detected.

You may also see warning messages generated by the compiler. Warnings differ from errors in that they point out a
condition which may cause the program to operate incorrectly, but are not necessarily a problem. When warning
messages appear, it is the responsibility of the programmer to decide if they can be ignored or if they must be addressed
in code.

FBasic TICkit 1 Getting Started

Protean Logic Inc. 19

1.6 Downloading the program: Getting the program inside the TICkit
Up to this point, the TICkit IDE has just been preparing the program on your console computer. When the program is
ready to test, it must be transferred inside the TICkit device. This process is called Downloading the program. Click the
RUN menu item, Click the DEBUG ONLY selection. The Debug Dialog window appears, shown below.

At this point, the console computer is waiting for communication protocol information from the TICkit. In most cases the
TICkit device will need to be reset to initiate communication. You can reset the TICkit device by pressing the reset
button, or by removing and reapplying power.

NOTE: The TICkit interpreter automatically tries to connect to a console computer immediately after power is
applied or reset. After 10 attempts (approximately 10 seconds) to communicate with a console computer, the
TICkit will abandon the console connection and run the program previously downloaded into it's memory. This
is how the TICkit can run without a console computer, and is also the reason why the TICkit must often be
reset to establish communication with a console computer.

The TICkit may repeat the connection attempt, under program control, if the debug connection is useful to the
function of the program. Use the debug_on() function inside your program code to accomplish this.

When you reset the TICkit, a message "Connected to TICkit..." appears in the debug dialog box as shown below. Click
PROGRAM on the menu, and click the DOWNLOAD CURRENT selection to begin the download process. The TICkit
IDE will report the download and verification process in the debug window. Once the download is complete, the message
"Program Verified identical to file", appears in the debug dialog box. The program is now stored in the TICkit and will
remain there until another program is downloaded. The program will even remain there when power is removed.

You could unplug the download cable from the TICkit device at this point, which would cause the TICkit to execute the
program and control the electronics of your project. However, as the "first63" program demonstrates, the debug dialog
window can be used as an input/output peripheral for the TICkit. The debug dialog window can also be used as an "In
Circuit Monitor" to observe the memory and program flow of the TICkit as it executes.

To execute the program, click the RUN menu item and click the EXECUTE selection. The message "Hello World..." will
scroll repeatedly in the console box of the debug dialog window. Congratulations, your TICkit is now running a
program.

1 Getting Started FBasic TICkit

20 Protean Logic Inc.

1.7 If you are having trouble
If your TICkit does not seem to be responding, or the console computer is not executing as this manual says it should,
follow the steps below to attempt to remedy the problem. If none of these things work, contact Protean Logic at: (303)
828 9156.

1. Verify that the power and download connections are not reversed. The plugs are not polarized, so try plugging
the cables in every orientation. Press the reset switch (or remove and reaply power) after every change.

2. Verify that the serial port selection of the Options dialog box are correct for your serial port and download
cable.

3. Verify that the download speed and TICkit register format selections of the Options dialog box are set to
Automatic. (This is the default, but it may have been modified by a previous user).

1.8 The TICkit development cycle: The standard routine

Initial Design

Assemble Electronics

Write the program

Compile the Prog.

Revise the program
Errors

Download the Prog.

Run & Test
no errors

Revise Electronics Check Prog. Logic

Electronics Errors Program Errors

Editor

Editor

Compiler

Project Finished

Debugger

Debugger

The "first" example is a very simplified version of the steps required to get a pre-written program compiled and installed
into a TICkit device. The routine for initially writing, compiling and debugging a program is no more difficult. The
diagram above graphically illustrates the steps involved for developing a program and what software tools are used for
each step.

The first step is to type in a new program or to copy an existing program which will be modified for a new application. If
you are creating a new program from scratch, click the FILE menu item, then click NEW PRIMARY selection. This will
pull up a skeleton program in the Primary source file edit area. The skeleton has some comment lines, the standard DEF
and LIB statements the FUNC NONE main program block required by all FBasic programs. From this skeleton you can
add your program statements.

The next step is to compile the program in the same way that the first63 program was compiled. Compiling does three
things for you. It checks your programs for syntactical errors or undefined terms. Second, it generates a machine readable
form of your program called a token file, Third it generates a symbol file that the debugger uses for symbolic information
about your program.

The end phase of the development cycle is the debug cycle. The tool used here is the debug dialog window of the TICkit
IDE program. The tokens are downloaded into the TICkit hardware using the download command of the debugger. At
this point any of many types of debugging techniques are used to verify that the program actually does do what it is
intended to do. The program can be executed and run at full speed, or the programmer can interactively step through each
line of the program and watch the results. Watching the program execute a line at a time is called "source level

FBasic TICkit 1 Getting Started

Protean Logic Inc. 21

debugging" and is a very effective way for finding bugs in programs. The debugging phase of the development cycle is
used to find "run-time" or "logical" errors in a program where as the compiler can only catch "syntactical" or
"grammatical" errors. Usually there will be at least a few errors of logic in a program. This fact generates the larger loop
in the development diagram. When an error in logic is detected while debugging the program, the programmer must go
back to the editing stage of the development cycle to edit the program source code, re-compile the program, re-download
the program, and test again until no errors of logic remain. At this point the program is complete. This scenario assumes
that any circuitry created for the task works properly also. Often changes in the user's hardware interface will require
changes in the program which requires re-editing, re-compiling, downloading, and debugging once again.

1.9 What next?
The next chapter will take a closer look at the sample program. This time the emphasis is on programming, not just using
the tools to get the program into the TICkit. In this chapter, the fundamentals of the FBasic language are discussed. After
this chapter, many programmers will be ready to get to their project. The remainder of the manual can be used as a
reference.

Chapter 3 covers some examples of circuits and programs combined, and other issues that more complex FBasic
programs can use to produce better programs. Some philosophy of why FBasic is the way it is appears here. Because the
Manual is in electronic form, you can actually highlight sample code, copy it to the clipboard, and paste it into the TICkit
IDE edit areas to experiment with the example code. Chapter 5 talks about the Keywords used in FBasic. Listing
keywords in alphabetical order enables this chapter to be used as a reference. Chapter 6 contains a list of functions. This
chapter is organized by what the functions do. Most programmers will want to spend some time reviewing this list to see
what is available and what sort of arguments the functions need.

If you need some more information on the TICkit IDE consult chapter 7 as it deals primarily with the TICkit IDE
interface. There are many aspects to this program, many of which are not covered in detail in the manual, so you will
need to experiment with functions to see exactly how they perform.

Be sure and become aquainted with the Protean Web Site at: //www.protean-logic.com. This site contains many
applications notes, product update information and links to other useful data sources. Also, spend some time to explore
the sample programs on the release disk. Information about the TICkit changes quickly and often there are new libraries

and other resources which have yet to be documented which are contained on the release disk.

1 Getting Started FBasic TICkit

22 Protean Logic Inc.

2 FBasic Anatomy
2.1 Dissecting the sample program, "first.bas"

DEF tic63_h
LIB fbasic.lib

GLOBAL word eeprom_pntr
GLOBAL byte each_byte

FUNCTION none main
BEGIN
 rs_param_set(debug_pin)
 =(eeprom_pntr, "Hello World...")
 =(each_byte, ee_read(eeprom_pntr))
 WHILE <>(each_byte, 0b)
 con_out_char(each_byte)
 ++(eeprom_pntr)
 =(each_byte, ee_read(eeprom_pntr))
 LOOP

 REP
 LOOP
ENDFUN

The sample program "first.bas", which is included in the Development Kit, is shown above. This program places the
string "Hello World..." on to the console screen. This program is typical of a program written in FBASIC. LIBRARIES
are usually referenced at the beginning of a program, the GLOBAL variables are declared and DEFINITIONS are listed.
Finally the program ends with the FUNCTION blocks that make up the procedural part of the program.

This example only has one FUNCTION, but usually there will be many functions in a program. The order of
FUNCTIONs is important in FBASIC. FUNCTION names, like all symbols, must be defined or declared before they are
referenced. This means that a FUNCTION block for a function name must be placed before any code which calls that
function.

The beginning execution point for all FBASIC programs is the FUNCTION main. The FUNCTION main will almost
always be the last function block in a program because it will reference all the other functions in a program, if any others
exist. The FUNCTION main must have no parameters and no return value. Another interesting point illustrated in the
example, is that there is really nothing for the TICkit to do when "main" finishes. So, it is a good idea to simply place the
TICkit in an infinite loop instead of allowing the TICkit to execute random code when main finishes.

2.2 A word about libraries
The first two lines of the example are a DEFINE directive and a reference to the library, "fbasic.lib". These two lines
work together to inform the compiler about the device that the program will eventually operate within. The define line
informs the fbasic.lib which version of TICkit hardware it is dealing with. The fbasic.lib file contains special instructions
that inform the compiler about keywords, available variable sizes, and what built-in hardware functions are available in
the TICkit. Virtually every FBASIC program will reference this library. This library, and its component library
"token.lib" are good sources of information about the standard library in the TICkit. By editing the file "token.lib", the
calling definitions for internal routines can be examined along with any notes or special definitions for the routines. This
information is as accurate as possible because this is what the compiler actually uses to make the program. A little later in
this chapter, our example will be modified to use another library that comes with the development kit that makes the
program even simpler.

The next few lines are GLOBAL lines. These statements define symbolic names and sizes to variable storage areas. In
our example, a 16 bit word is associated with the symbolic name "eeprom_pntr" and an 8 bit word is associated with the
symbolic name "each_byte". The programmer never needs to know the physical location of these variables since the
compiler will always know where they are on the basis of their symbolic names.

FBasic TICkit 2 FBasic Anatomy

Protean Logic Inc. 23

The next lines create a procedure block for the symbol "main". As mentioned before, the FUNCTION main is the starting
execution point for any FBASIC program. Every FUNCTION in FBASIC must be given a name and a type for any value
that it returns. "Main" will never return a value (it has no place to go), so it is defined as type "none". The FUNCTION
"main" never has any parameters either, but if it did have parameters or local values, they would be defined for the
duration of the FUNCTION block and would appear between the FUNCTION and BEGIN statements.

BEGIN is the statement which marks the beginning of code generation. All the statements between a BEGIN and an
ENDFUN are code generating statements. In our example, two assignments, two loops, some math, some EEprom
functions, and a console output function are referenced.

FBASIC has expression evaluation, but it has no "operators". This means that all arithmetic is performed using function
calls. Even assignment, (=) is accomplished using functions. This "limitation" makes the language very simple, but
possibly a bit unfamiliar. To reference a function simply use the function's name followed by a left parenthesis "(". This
tells the compiler that the program is to execute the code contained in the procedure block or operation which has that
name. If any parameters are to be used, they would be placed after the left parenthesis, but before the matching right
parenthesis ")". Parameters in function calls can be variable references, parameter references, constants, or other
functions with return values.

In our example, the first assignment line will assign a value to the variable "eeprom_pntr". The value it assigns is a 16 bit
pointer to the string "Hello World...". The string "Hello World" appears to the compiler as a constant. This may seem
mystical but it really is quite simple. When the compiler sees a quote (") it understands that a string constant is being
defined. All characters that appear in the string will be placed at the end of the program code and a pointer to beginning
of that EEprom location will be used as the value of the constant. Our example places the EEprom address of the place
where "Hello World..." is stored into the variable "eeprom_pntr".

The next line reads a byte from the EEprom at the location given by the variable "eeprom_pntr" and places that byte into
the variable "each_byte". The function "ee_read", which is contained in the standard library, is what actually does this
operation. The byte that is returned from that function is placed in "each_byte". Assignment operators in the standard
library copy the contents of the second variable (ee_read) into the memory area of the first variable (each_byte).

The next line is a WHILE statement. This statement marks the beginning of a structured loop in FBASIC. An expression
follows that tests for a looping condition. The body of the loop will be executed only while the expression evaluates to a
non-zero (true) value. The first LOOP statement ends this WHILE block. The expression for this WHILE statement tests
the variable "each_byte" against the byte constant 0. If they are not equal, the "<>" function returns a value of 255 (all 8
bits are one). If "each_byte" is equal to 0, the "<>" function returns a 0 indicating that the comparison failed. All
relational functions in the standard library return either a 0 or 255.

The body of the loop contains three function calls. The first call is to a function which outputs one byte to the Console.
This function will cause the contents of the variable "each_byte" to appear as an ASCII character on the Console display.
The second function call is a 16 bit increment function. This function returns no value, but increments the argument by
one. The third function in the loop is like the function which preceded the loop. It simply reads a byte from the EEprom
at the specified address and places it in the variable "each_byte". These three statements will be executed until a 0 is read
from the EEprom. The zero will be there because FBASIC always terminates string constants with a single 0 byte.

The last two statements form an infinite loop. The REP statement starts a structured looping block and the LOOP
statement ends the block. Since both the top and bottom of the loop are unconditional, the TICkit will simply loop in this
location until it is reset.

All loops in FBASIC have one of two starting statements and one of two ending statements. Loops can be started with
either a REPEAT or a WHILE statement. The WHILE statement establish a condition for entering and continuing the
loop. REPEAT causes repetition with no condition. Loops can be ended with either a LOOP or an UNTIL statement. The
UNTIL statement establishes an exit condition for exiting the loop. The LOOP statement will never cause an exit, but
simply causes the body of the loop to repeat. The body of the loop must use some other means, like a WHILE or a STOP,
to exit. Any combination of beginning and ending statements forms a valid structured loop in FBASIC.

Two other statements are associated with loops in FBASIC. The STOP statement will cause the loop to be exited, while
the SKIP statement will cause execution to jump to the LOOP statement.

2 FBasic Anatomy FBasic TICkit

24 Protean Logic Inc.

2.3 A more elegant "first.bas"
DEF tic62_c ; version 62A of TICkit
LIB fbasic.lib

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 con_string("Hello World...")

 REP
 LOOP
ENDFUN

This version of "first.bas" uses a library which has a pre-written routine for doing string output to the console. The
function "con_string" is contained in the library "constrin.lib". This general purpose routine uses a pointer into EEprom
as the pointer to the beginning of a ASCII string. The contents of the string will be output to the Console until an 0
character is encountered in the EEprom. The "con_string" library file contains:

; Generic function to output a string of characters from
; EEprom to the Console

LIB fbasic.lib ; This will be ignored if the root
; program referenced fbasic.lib

FUNCTION none con_string
 PARAM word pointer

 LOCAL byte each_byte
 LOCAL word temp_pntr
BEGIN
 =(temp_pntr, pointer)
 =(each_byte, ee_read(pointer))
 WHILE <>(each_byte, 0b)
 con_out_char(each_byte)
 ++(temp_pntr)
 =(each_byte, ee_read(temp_pntr))
 LOOP
ENDFUN

This Library function is quite similar to the original "first.bas" except that it uses local values and a parameter to make it
a more general purpose function. The PARAMETER statement informs the compiler that a symbol of the given type or
size is going to be coming from the calling reference. The statements in the function can have access to this data by
referencing the parameter name. The LOCAL statements are just like GLOBAL variable definitions except that they exist
only to the statements contained in the function. This saves on memory space and also prevents accidental symbol name
conflicts in programs that use this library. A temporary copy of the pointer passed to the "con_string" function is made so
that the calling value is not modified.

The lines at the beginning of the file that begin with ";" are comments. Any part of a line that follows a ";" is treated as a
comment and is ignored by the compiler. Therefore a ";" as the first character of a line is equivalent to the REMARK
statement.

Examination of other libraries contained in the FBASIC Development Kit will illustrate other programming concepts for
the FBASIC language.

2.4 FBASIC line syntax (labels, remarks, conditionals)
FBASIC is a line oriented language. This means that there is really only one statement per line. There are quite a few
additional things a programmer can do with a line though, besides just putting a statement on it. For example, a line may
be blank, or it may have a comment, or it may have a label, or a conditional compilation directive, or it may even be
extended onto the next line. The sample program above used blank lines to keep things a bit easier to read, and the library

FBasic TICkit 2 FBasic Anatomy

Protean Logic Inc. 25

routine above used the ';' on a few lines to place text messages to the programmer for future reference. The code sample
below shows a few more things that can be done:

; Code fragment to illustrate line syntax

:again1 con_string("hello ~
 ~again...\x0d") ; repeat this

IFDEF exit_capable IF ==(con_in_char(0), 23b)
IFDEF exit_capable GOTO done1
IFDEF exit_capable ENDIF

GOTO again1

:done1

This code fragment does not exemplify good programming practice, but it does illustrate some of the trickier things that
can be done with lines in FBASIC. The first line is simply a comment line to explain what the code does. The next line
uses the ":" to associate the label "again1" with this line in the program. All labels in FBASIC are local, so only other
lines in the same function can reference "again1". This same line uses con_string to output a string of characters to the
console. The literal string is a bit peculiar looking, however. The "~" character is used to extend a line onto a following
line. Therefore, this string is actually, "hello again...\x0d". Using line extension can make a program easier to read when
lines get long. Another element of this line that is a bit odd is the "\x0d" in the string. The '\' character is an escape
character. The escape character is used whenever something unusual is to be done with the character, or characters, that
follow. In this case the '\x' informs the compiler to insert a byte with the value of the following two hexadecimal digits. In
this example, a value of 0d is used which is an ASCII return character. The following table summarizes the escape
characters and their meanings:

Escape seq. Sequence Meaning
\R ASCII return character
\L ASCII line feed character
\\ \ character (no escape)
\" " character (doesn't terminate literal)
\' ' character (doesn't terminate literal)
\~ ~ character (doesn't extend line)
\xnn character of hexadecimal value nn (2digits)
\dnnn character of decimal value nnn (3digits)

A few lines further into this code fragment are three lines with IFDEF directives. IFDEF is a compiler directive. The lines
that follow the IFDEF <symbol_name> will only be compiled if the <symbol_name> has been defined. In our example,
the symbol "exit_capable" is tested to see if it has been defined previously in the program. If it has, the three lines
comprising the IF statement will be included in the compile. Otherwise, the three lines are ignored. The IFDEF directive
is used by the fbasic.lib file to include only the appropriate version of the token.lib. This is how DEF tickit_2 at the
beginning of the program causes the proper code to be generated for the 2.x version of the TICkit interpreter.

2.5 Constants, constants, and more constants
The rules regarding constants are often hidden or overlooked aspects of programming languages. FBASIC allows for
different sizes of constants, different radix of constants, and some special types of word constants which are actually
pointers into EEprom storage. Why all the different types? By expressing constants in the proper size and in the proper
way, the program executes faster and more efficiently. At the same time, the programmer can easily understand what the
constants mean. For example, the decimal number 128 may not seem structurally significant, but the binary representation
of that number, 10000000, clearly indicates that the 7th bit is set high. Constants are not too difficult to learn provided
that their basic structure is understood.

For numeric constants, the structure always starts with a numeral. Often a leading zero is used to ensure that any
non-numeric elements of the constant (like radix or hexadecimal characters) do not fool the compiler. An optional radix
indicator may follow the leading zero in the second character, then one or more digits of the constant, and ends with an
optional size indicator. For example, 0x0fa8L is a hexadecimal constant as indicated by the 'x', and it is a LONG size as
indicated by the trailing 'L'.

2 FBasic Anatomy FBasic TICkit

26 Protean Logic Inc.

Radix indicators are: Y=binary, D=decimal, X=hexadecimal.

Size indicators are: B=byte, W=word, L=long.

; Examples of constants

=(var1, 0y00010011b) ; the y makes it binary (base 2)
; the b makes it a byte

=(var2, 0xff04w) ; the x makes it hexadecimal (base 16)
; the w makes it a word

=(var3, 0d12345678l) ; the d makes it decimal (base 10)
; the l makes it a long

In addition to the numeric constants, there are also ASCII constants. The ASCII constants allow for strings of values.
Therefore, they are indicated with quotes. The "" is used to indicate a word constant which points into EEprom memory
where the string of ASCII constants will be stored. The ' ' is used to indicate a byte constant or multiple byte constants in
an INITIAL statement. Usually only the first byte of a ' ' string is used as the byte value of the constant, but the INITIAL
statement is able to use all of the byte constants and place them in allocations that can use more than one byte value. An
example of these string constants is: "hello world", used in the first.bas program. The byte constant 'hello world', would
actually evaluate to 104, which is the ASCII code for a lower case H character. Unless in an INITIAL statement the ' '
will usually only have one character in them. For example:

con_out_char('H') ; an alphanumic value byte constant

2.6 Using DEFINES and Constant Operators
Larger programs often have many references to the same constants. To prevent typing errors and to provide for easy
modification of the constants involved, symbols are used in place of numbers throughout the program. This is
accomplished using the DEFINE directive. The example below shows how the constant, "temp_offset", is used in place
of the number 103b. First the symbol is defined, then later in the program, the symbol is used instead of the number.
Imagine a program that has 45 lines of code that refer to temp_offset.

DEF temp_offset 103b
.
.
.

IF >(in_val, temp_offset)
 con_out(+(temp_offset, in_val))
ELSE
 con_string("Reading out of range")
ENDIF

Now imagine that while debugging you decide the temperature offset of your device needs to be changed from 103 to
121. A program that used the DEFINE, requires only on change. A program that used the number in every reference
would need all 45 lines changed, assuming you could find every occurance.

Another useful tool to use with symbolic constants is the '|' compile time operator. The "vertical bar" operator performs a
bit-wire OR of the constants adjacent to it. The example below is very common in TICkit programs that us RS232. It uses
DEFINED constants with the '|' operator to build up the format, baud rate, and pin number used in the rs_param_set()
function. This notation is much clearer than a binary number.

rs_param_set(rs_invert | rs_4800 | pin_d5)

instead of:

rs_param_set(0y11000101b)

2.7 String constants and implicit allocation
Very commonly, a program needs to output a sequence of alphanumeric bytes for display. These sequences are called
strings. FBASIC supports this common requirement by utilizing the double quotes " " to generate a special string
constant. The string constant performs two distinct operations. First, it causes the compiler to place the contents of the

FBasic TICkit 2 FBasic Anatomy

Protean Logic Inc. 27

quoted string into the EEprom. Second, the " " string produces a word constant that is the EEprom address of the first
character of the string. This has the net effect of both allocating and initializing memory as well as producing a way to
keep track of the constant.

The string information is placed in the EEPROM immediately following the program tokens and a \0 (byte of value zero)
is appended to the end of each string. The appended \0 at the end of the " " string can be used to determine the end of the
string and is a common convention refered to as "null termination".

con_string("Have a nice day\r\l") ; a word constant which
; is a pointer into EEprom

; It points to the beginning of the string,
; where the compiler placed it in EEprom.

2.8 Allocation Constants and Field Names
The last type of constants have to do with EEprom allocations. These constants provide a means of working with EEprom
storage on a record or array basis. Some of these issues may not be clear immediately, unless you are familiar with upper
level languages which have structure capability like C or Pascal. But these concepts are not difficult, just keep in mind
that these values are not the storage, but simply word pointers to the storage and can be manipulated like any other word
size number. Look in the Keyword section of the manual under ALLOCATE, RECORD, FIELD, and INITIAL for more
information.

First, let's look at the structure of a FIELD name. Fields are the part of a record that actually hold information. Records
can be thought of as a way to collectively refer to more than one data value. FIELDs usually hold simple bytes, words, or
longs, but they can also refer to previously defined RECORDs. This creates a tree system. Not only can a FIELD refer to
single data items, it can also refer to more than one. So, by using a "count", an array of data items can be referred to in a
FIELD. For example:

RECORD product
 FIELD byte prod_name[25]
 FIELD word prod_code
ENDREC

RECORD demo
 FIELD long demo_no
 FIELD word demo_time
 FIELD byte name[30]
 FIELD product demo_prod
ENDREC

ALLOCATE demo demos[50]

INITIAL prod_code@demo_prod@demos[0] 1001
INITIAL prod_name@demo_prod@demos[0] 'TICkit Assemblies'

Don't be concerned if this all seems a little foreign right now. Remember, we are concerned with understanding constants
at this point. All the record and allocation stuff can come a bit later. From our example though, there are six FIELD lines.
The first FIELD line and the fifth FIELD line all use a "count" to indicate that the field contains 25 and 30 bytes
respectively.

The sixth FIELD line shows how a FIELD in one record can refer to a previously defined record.: FIELD product
demo_prod

The ALLOCATE line is what actually reserves the space in the EEprom. In this case it will reserve enough room to hold
all the fields for the record demo. The allocation is named "demos". Whenever we refer to "demos" in the program, we
are actually referring to the EEprom address of the first 8 bit location of this allocation. Therefore, simply using the word
"demos" in an expression is using a constant. The more information that is attached to demos, for example the demos[0],
the further the constant is pointing into the allocation. Records are also constants. Records named in expressions refer to
offsets within an allocation. Also, fields are simply offsets from the beginning to the record in which they appear. The '@'
is used to add up all these offsets at compile to refer to individual fields within an allocation. For Allocations or Records
where more than a single count of an item exists, a numeric constant can be used with a @ to get to the correct individual

2 FBasic Anatomy FBasic TICkit

28 Protean Logic Inc.

storage element. All this works out nicely as a way to refer to EEprom storage symbolically.In the above structure
example, the following line outputs the product name to the console:

con_string(prod_name@demo_prod@demos[0])

There is one more issue related to the FIELD, RECORD, ALLOCATION scheme, however. Occasionally you may want
to know what the size of a storage element is. By using just the record name in an expression, the size of the storage
element is used in the expression. This constant is very useful to calculate the location of a particular count storage
element using variables at run time.

The '!' is often used in this sort of calculation. The '!' operator lets the compiler know that you intended to use a partial
field name. Without the '!' operator, the compiler would report an error if a partial field name is used in an expression.
This basically boils down to an array offset. Therefore, in the following example, a 16 bit corrected value is returned
from an 8 bit input that represents an A/D reading.

RECORD each_entry
 FIELD word adj_value
ENDREC

ALLOC each_entry A_D_correct 256

FUNCTION word A_D_adjust
 PARAMETER byte ad_inval
BEGIN
 =(exit_value, ee_read_word(~
 ~ +(!a_d_correct, *(ad_inval, each_entry))))
ENDFUN

The assignment statement uses a standard array calculation of an offset plus a size times the array index to come up with
the EEprom address of the correct word for the given 8 bit a_d_value.

Ok, this last section got pretty deep. Just remember that there are constants for both the initial offset of an EEprom
allocation as well as the size of an Allocation element. When you start using the EEprom as a storage medium, these
types of constants will come in quite handy. They will also eliminate the need to remember a bunch of numbers. Once
you get a good handle on the ALLOCATE statements, take a look at the SEQUENCE statement. It is just like
ALLOCATE but does not use EEprom space.

2.9 Variables, Global vs Local and precious RAM space
The discussion above dealt with constants, but the real issue in programing is utilizing variable space efficiently.
Computers of all sizes have limited resources. Small computers and controllers, like the ones that implement FBASIC,
have particularly harsh limitations in terms of RAM memory. The TICkit 57 has only 48 bytes of RAM total while the
TICkit 62 has 96 bytes of RAM. The current FBASIC TICkit token scheme limits the maximum available RAM in any
processor to 128 bytes. RAM is used to store variable's information which changes quickly, and stack-based data such as
program flow information.

Because this type of memory is so scarce, FBASIC has provided many features to optimize its use and organization. The
issues of data size have already been discussed in reference to constants, but using only as much space as is required for
any given variable is probably more important in the discussion of RAM than constants. Besides choosing the smallest
size of variable, another option exists for limiting the scope of a variable.

Variable scope refers to how long, or for what section of a program, space is allocated to a variable. GLOBAL variables
have global scope. This means that space is allocated to the variable name for the entire time the program is executing.
LOCAL variables have local scope sometimes called function scope. LOCAL variables only have space allocated during
the short period that the program is executing in the function the variable was defined within.

LOCAL variables offer several advantages. First, they allow different functions to share the same RAM space for
variables. Second, they limit where a variable name can be referenced. This provides the compiler with an ability to
check the programmer's work. If a variable is defined only within a function, any reference to that variable outside of the
function can be assumed to be an error.

FBasic TICkit 2 FBasic Anatomy

Protean Logic Inc. 29

GLOBAL variables can be used by any function and actually operate a little bit faster than LOCAL variables. The main
drawback to GLOBALs, however, is that they occupy scarce RAM space even if the information is not being used, or is
no longer needed.

Now, there is an obvious question that arises out of this discussion. What happens when the memory space is exceeded?
If there are too many GLOBALs, the compiler will report an error. However, the more common situation is that the
memory is exceeded dynamically while the program is running. This occurs because the compiler can not forsee how the
local variables will be used and when they will allocate memory. As the program is running and executing functions and
nested functions, the local memory stack may grow to the point that it starts overwriting the GLOBAL area. This will
usually result in strange program results.

If a program is using a lot of LOCAL variables and there is a possibility of a stack overflow, the programmer should
execute the program with the debugger connected in monitor mode. The debugger continuously monitors both the stack
pointer and memory pointer and alerts the user if an overflow occurs. THIS IS A TRICKY SOURCE OF
UNEXPLAINABLE BUGS, and is a good thing to check if a program mysteriously stops functioning properly.

The TICkit62 implements a stack overflow vector call. This was unavailable in the TICkit57. Basically, a vector call is
simply a function that gets called by something other than the lines of your program. In the case of the stack overflow
vector, the function called "stack_overflow" will be executed whenever the interpreter runs out of memory. You can not
return from this function, so this function is typically used either to inform the programmer of something which needs
attention, or is designed in a final product to perform a controlled shutdown. For example, the maker of an elevator
controller assumes the stack will never overflow, but if it does due to some unforseen circumstance, he may program the
elevator to apply brakes, turn off motors, and allert the security system.

2.10 Variable Arrays and Indirection
Most of the time, variables are simply named locations in the computers memory used for storing discrete information.
Sometime, though, arrays are used to allow run-time distinction between variables. When a variable or data item is
refered to by name it is called a direct reference. There are times when a generic piece of a program is to operate on data
items which are to be determined by the execution of the program not just the position in a program. In this case, we need
a way to change the reference to data under program control. This is most commonly accomplished using one direct
variable to "point" to another data element. This reference is refered to as indirect. FBASIC allows explicit pointers with
ALLOCATIONs but not with variables. Variable indirection can only be accomplished implicitly with Arrays. Array
variables look just like any other variables except that they use the "[]" characters to indicate an array index. This index
can be a constant or another byte size, variable expression. The "[]" are also used in the array definition like a GLOBAL
or LOCAL statement to indicate how many elements will be in the array of that name. Arrays can be viewed as a finite
number of similar sized storage elements lined up in a row in memory. The entire row is referred to by the name of the
array, and the individual elements are refered to by a combination of the name of the array and a number index that
indicates which element, from the beginning of the array, to use. An index starts at 0 for the first element and continues
up to the size of the array less one.

There are actually two types of arrays in FBASIC. There are variable arrays and allocation arrays. Both allow indirect
reference to memory, but the variable arrays are used to access the internal RAM of the processor and are very fast. The
allocation arrays are used to conveniently calculate offsets in EEprom or some other off-processor memory resource.
These array elements have to be de-referenced (read or writen) explicitly with read and write functions and are typically a
lot slower to access than variable arrays.

Arrays are used most commonly to refer to elements that are handled the same for one purpose, but differently for
another. For example, we might have a routine that manipulates dates and times that are read from a clock device. In this
case, we will want to read all the clock information in at once so there is no minute, second, or hour roll-over between
consecutive reads from the device. A single routine reads 16 bytes of information in from the clock IC into an array of
values and treats all of the bytes the same. The display routine is only concerned with certain array elements and treats
each element differently. The example below demonstrates this:

2 FBasic Anatomy FBasic TICkit

30 Protean Logic Inc.

; program fragment to illustrate the use of arrays

GLOBAL byte read_vals[16] ; define 16 element array of
; byte values

FUNC none read_ic ; reads all 16 bytes from the
; device

 LOCAL byte val_numb 0b
BEGIN
 read_ic_init() ; gets the IC ready to xmit all regs
 REP
 =(read_vals[val_numb], read_ic_byte())

; the above line assumes that a function
; called read_ic_byte will return the
; next consecutive register of the clock
; IC internal memory

 ++(val_numb)
 UNTIL ==(val_numb, 16b)
ENDFUN

FUNC none display_time
BEGIN
 lcd_string("The time is: ")
 lcd_write_num(read_vals[5]) ; 5th element is hours
 lcd_send(':')
 lcd_write_num(read_vals[6]) ; 6th element is mins
ENDFUN

2.11 Functions, parameters, and exit value
The discussion of variables above suggests that functions have some special significance besides just being subroutines.
This is exactly the case in FBASIC. Functions are used extensively in expression evaluation and device driver creation.
Functions are just small sections of instructions which act like mini-programs. They can have their own memory
variables, their own compile defines, and some special names for input and output.

Functions have some very special local values called parameters and exit_value. These local values are used to get
information into the function from the rest of the program and to return values back to the rest of the program.

The exit_value is used as the default method of returning a single value to the rest of the program. It is very common for
a section of a program to need to return back one result. This is so common that FBASIC has dedicated a symbol named
"exit_value" as a pre-defined local symbol in every function which is declared to return a value. For each function,
exit_value will be of the type and size that the function was declared to be and can be assigned and manipulated just like
any other local variable. When an EXIT or ENDFUN is encountered, the data contained in the exit_value is sent back to
the calling program as the value of the function.

Parameters are the opposite of exit_value, but can be used to return information also. Parameters appear as local
variables, but are really just pointers to variables in the calling program. This gives the function the ability to indirectly
refer to data the calling program has for varying situations. The function can read and manipulate pointers. Keep in mind
that any change to a parameter in a function will be reflected in the corresponding variable of the calling function or
program. It is usually good programming practice to avoid modifying parameters.

The following simple example illustrates how an addition function can be made:

FUNC word plus
 PARAMETER word val_1
 PARAMETER word val_2
BEGIN
 =(exit_value, +(val_1, val_2))
ENDFUN

An example of the use of the plus function as we defined it above would be:

FBasic TICkit 2 FBasic Anatomy

Protean Logic Inc. 31

=(sum_val plus(val_1, val_2))

This returns with the word length sum of val_1 and val_2 and assigns that value

to the variable sum_val of word length that must have already been defined as a global or local before using it in the call
to the plus function.

This is sort of a trivial example, as a '+' is used to implement the 'plus' function. A more likely case would be a keyboard
input routine, which might return the ASCII value from a routine that scans keyboard hardware.

Just to make this discussion relevant, the following code sample comes from the file "ltc1298.lib" and shows how a
library can be used to make a generic driver for an IC.

2.12 A device driver library for the LTC1298 (12bit A/D)
; Functions to control A/D
; These functions rely on three defines to work properly
; cs = Chip Select pin 'Must have a separate line '
; clk = Clock control pin 'Can share a data line '
; data = data pin 'Can share a data line i.e. an LCD'

; Routine to read a data from an LTC1298 or LTC1288 A/D chip

FUNC word read_ltc1298
 PARAM byte config ; This value indicates mode and channel
 ; for the A/D chip.
 ; bit 7 = mode (0=single end,
 1=differential)
 ; bit 1-6 = channel select
 ; bit 0 = polarity for differential or
 ; lsb channel select
 LOCAL byte count 0b
BEGIN
 pin_low(ltc_clk)
 pin_low(ltc_cs)
 pin_high(ltc_data) ; start bit
 pulse_out_high(ltc_clk, 10w)

 IF b_and(config, 0y10000000b) ; differential conversion?
 pin_low(ltc_data)
 ELSE
 pin_high(ltc_data)
 ENDIF

 pulse_out_high(ltc_clk, 10w)
 IF b_and(config, 1b) ; select channel or polarity
 pin_high(ltc_data)
 ELSE
 pin_low(ltc_data)
 ENDIF

 pulse_out_high(ltc_clk, 10w)
 pin_high(ltc_data) ; use msb first format
 pin_high(ltc_clk) ; clock in the msbf bit
 =(count, pin_in(ltc_data)) ; make data line an input
 pin_low(ltc_clk) ; return clock to low state

2 FBasic Anatomy FBasic TICkit

32 Protean Logic Inc.

 =(count, 0b)
 =(exit_value, 0w) ; get data loop ready
 REP
 pulse_out_high(ltc_clk, 10w) ; clock for next bit
 =(exit_value, <<(exit_value)); shift exit to left
 IF pin_in(ltc_data)
 ++(exit_value)
 ENDIF

 ++(count)
 UNTIL ==(count, 12b)

 pin_high(ltc_cs)
ENDFUN

The example above is a bit lengthy, but is a working example of a device driver using a function with parameters. The
parameter is a single byte and tells the device how to configure its 2 input channels. Depending on the level of the 7th bit
and the 1st bit this device can do either differential or single ended conversions and it can be programmed to return the
level of each channel individually or the difference of the two channels in either polarity. The protocol for sending this
information and retrieving the conversion result is not highly complex, but could easily waste a day of time to figure out
and debug. If you wanted to use an LTC1298 in your design, you would not need to worry about the communications
protocol. As in the program sample below, you would simply include this library routine in your program and call the
function. The program below reads the two channels of the LTC1298 and captures the data on a PC using the
ACQUIRE.EXE program. The example is complex, but should give you some ideas of what can be done with the TICkit.
This program would work with up to 26 TICkits in a small data aquisition network.

; This program uses an LTC1298 or LTC1288 (3v version)
; to take 12bit analog voltage readings once a second
; and sends these readings to a PC console
; running the ACQUIRE program.

; This program is designed so that multiple TICkits can be
; connected to this wire in a multi-drop configuration.

; Thanks to Scott Edwards for his Jan 1, 1996 "Nuts and Volts"
; article highlighting the use of the LTC1298 with the TICkit.

; Written by: Glenn Clark

DEF tickit_d LIB fbasic.lib

DEF ltc_cs pin_D0 ; pin D0 connects to ltc chip select
DEF ltc_clk pin_D1 ; pin D1 connects to ltc clk line
DEF ltc_data pin_D2 ; pin D2 connects to ltc data line

LIB ltc1298.lib ; contains routine to drive LTC1298

DEF designation 'a' ; this is the polling code for the PC
 ; for multiple TICkits connected to
 ; the serial wire

DEF net_pin pin_A7 ; this is the network aquisition pin

FBasic TICkit 2 FBasic Anatomy

Protean Logic Inc. 33

FUNC none line_sync
 LOCAL byte match_count 0b
 LOCAL byte rs_errors
BEGIN
 REP
 IF ==(rs_receive(0, rs_errors), designation)
 IF ==(rs_errors, 0b)
 ++(match_count)
 ELSE
 =(match_count, 0b)
 ENDIF
 ELSE
 =(match_count, 0b)
 ENDIF
 UNTIL >=(match_count, 2b)

 delay(1)
 rs_send(designation, 0b)
ENDFUN

FUNC none rs_out ; convert word to serial string
 PARAM word in_val ; parameter is destroyed
BEGIN
 rs_send(+(48b, trunc_byte(/(in_val, 1000w))), 0b)
 =(in_val, %(in_val, 1000w))
 rs_send(+(48b, trunc_byte(/(in_val, 100w))), 0b)
 =(in_val, %(in_val, 100w))
 rs_send(+(48b, trunc_byte(/(in_val, 10w))), 0b)
 =(in_val, %(in_val, 10w))
 rs_send(+(48b, trunc_byte(in_val)), 0b)
ENDFUN

FUNC none main
 LOCAL byte tic_count
BEGIN
 pin_high(ltc_cs)
 pin_low(ltc_clk)
 rs_param_set(rs_invert | rs_9600 | net_pin)
 rs_stop_chek()
 rtcc_int_256()
 REP
 =(tic_count, 150b) ; used 150 instead of 156
 ; to fudge latency time and
 ; probable xmit delays
 WHILE tic_count
 rtcc_wait()
 rtcc_set(6b) ; divide by 250 (256 - 250 = 6)
 ; enough time for approx 128 tokens
 ; results in 78.25 readings per sec
 --(tic_count)
 LOOP ; this loop should exit every 2 secs

 line_sync()
 rs_send(':', 0b)
 rs_out(read_ltc1298(0b))
 rs_send(' ', 0b)
 rs_out(read_ltc1298(1b))
 rs_send(13b, 0b)
 LOOP
ENDFUN

This program uses the internal RTCC counter of the TICkit to take readings approximately every second. There are many
libraries supplied with this development kit which are not documented in this book. Use your text editor to look at all the

2 FBasic Anatomy FBasic TICkit

34 Protean Logic Inc.

*.lib files to see what is available. Also, check in periodically with the Protean BBS or Protean home page to see if new
function libraries are available. Most of the libraries have some documentation in their source and can be used "as-is" to
accomplish many interesting things.

2.13 Captain, I think the functions are overload'n!
One last interesting feature of FBASIC is that it can overload function names. This means that different functions can
have the same symbol name. This is very useful for generic functions that perform similarly but the data they operate on
differs. For example, when adding numbers, different variable precisions can operate more efficiently than others. The
"+" sign is still the ideal symbol for all addition functions, though. FBASIC will count the number of arguments in a
function reference and consider their types to determine which of the many possible "+" functions to use in each case.
Therefore, adding two bytes can use a different routine than two 32 bit longs, while still using the "+" symbol for the
function.

In the example of the function "plus" in section 3.10 of this manual, to make it work with byte values and 32 bit long
values it would be necessary for the programmer to create functions exactly like "plus" using byte and long types for the
PARAMETER definitions. These functions would normally be collected together in a library of similar functions.

Programmers may wish to take advantage of this feature as they write special I/O libraries. Careful use of this feature can
make nice general purpose libraries.

2.14 What's Next?
This discussion only begins to cover the FBASIC language. The programmer needs to review the KEYWORD summary
and the standard library summary for more information on the FBASIC language. The next chapter gets provides many
examples. If this chapter gets boring, simply skip it and start writing some programs. When you need a function or flow
control capability, look to the KEYWORD summary or standard library summary to find what you need. Spend some
time looking at the sample code and the supplied libraries.

2.15 Check out the the Protean Web Site
The Protean web site (http://www.protean-logic.com) is good source for information and sample programs. Many
programs and libraries are posted on the site for users to draw on for their own applications. The message area can be
used to ask other users questions, or to share ideas, etc. Leave comments and questions on the web site to the page
master. Protean checks these messages periodically and will respond to messages as soon as possible. Enjoy the FBASIC
TICkit!

FBasic TICkit 2 FBasic Anatomy

Protean Logic Inc. 35

The program for blinking the LED is equally simple. Most of the program is the required fbasic verbage to inform the
compiler of the version of the TICkit and where to start the program. Before showing the final LED blinking program,
examine the program below to simply turn on the LED.

DEF tic62_c
LIB fbasic.lib

FUNC none main
BEGIN
 pin_low(pin_d0) ; this is the same as pin_low(0)

 REP
 debug_on()
 LOOP
ENDFUN

3 Simple Examples
3.1 A simple program to blink an LED
After you get your TICkit up and running the "Hello World..." program, a good second program is a simple program to
blink an LED. This assures that you understand basic I/O and how to connect devices electrically to the TICkit. In this
example a general purpose I/O pin drives an LED via a current limiting resistor, R1. The output is wired to be low active,
which means the LED is lit by outputing a ground level. It is desirable to drive higher current devices at ground level
because the internal nature of the TICkit processor can drive higher currents from ground than from +5 vdc. The circuit is
shown below.

This circuit is very simple. When your program instructs, the TICkit processor will turn on an internal switch that
connects the pin labeled D0 to the ground. This completes a circuit in which current flows from the +5 vdc power supply
input, through the forward biased LED, through the 330 ohm current limiting resistor and then through the TICkit
processor to the ground of the power supply. No other pin of the TICkit module need to be connected. For the +5 vdc
input you can use any regulated power supply. Many people have access to a 5 volt supply. If not, you can use one of the
circuits shown in the next section as a power supply. Any of the general purpose outputs can be used for this program
(pins labeled D0 through D7 or A0 through A7). They all function in the same way. When writing your programs refer to
the pins through their cooresponding symbolic names. For example the pin labeled D0 is symbolically refered to as
"pin_d0" within a program just as the pin labeled A5 is called "pin_a5". The symbols for the pins are actually numeric
constants that evaluate to a number between 0 and 15. Pin D0 is pin number 0, pin D1 is number 1 etc. and pin A0 is pin
number 8, pin A1 is pin number 9 and so on. It is usually preferable to refer to constants by symbolic name as it makes
the program easier to understand and allows easier modifications later on. Numbers or variables can be used in the
pin_high() or pin_low() functions when your application can benifit from a pin reference that is variable.

3 Simple Examples FBasic TICkit

36 Protean Logic Inc.

An LED (Light Emitting Diode) is a special
diode fabricated to glow brightly when a current
passes through it. Like all diodes, it has a
polarity.

In the schematic symbol, the arrow should point
to the more negative connection to forward bias
the LED. The cathode (the terminal the arrow
points to) is usually indicated by a flat side on the
LED. The anode (the terminal the arrow points
away from) usually has the longest lead.

Because an LED's junction drop is 2 volts, a
current limit resistor is required to prevent the
LED from burning out in a 5 volt system.

The first function this program executes is the pin_low(pin_d0) line. This function makes the specified pin an output
and switches it to ground. Once this line executes, the LED is on. The lines at the end of the program are there because of
the nature of a controller. The TICkit is a controller computer. This means it presumably controls something. In the above
program, the last three lines make the program continually ask to connect to the console. If these lines were not there, the
TICkit would have no idea what to do when it finished the function, so it would execute random garbage contained in it's
eeprom. This could reset the processor or do virtually anything. By putting the loop at the end of our program, we can be
sure that the processor is occupied in the loop and the LED stays on for us to observe.

Most control programs are just big loops. They execute the same basic task over and over their entire life. As you write
more programs you will see this tendency emerge.

Okay, lets make the light blink. This next program does indeed blink the light, but does not give satisfactory results, see if
you can discover why:

DEF tic62_c
LIB fbasic.lib

FUNC none main
BEGIN
 REP
 pin_low(pin_d0)
 pin_high(pin_d0)
 LOOP
ENDFUN

Did you figure it out? The pin_d0 will indeed turn the LED on and off, but at so fast of a rate that it appears to be on
constantly. This effect is useful for multiplexing, but not for blinking some lights. The correct program needs some delay
for both the on state and the off state. If you have more delay in the off state than the on state, the LED will appear
dimmer. If you have more delay in the on state than the off state, the LED appears brighter. This is an important concept
called pulse width modulation (PWM) that we will discuss in detail later on. The correct program for a 1 second blink
rate is as follows:

DEF tic62_c
LIB fbasic.lib

FUNC none main
BEGIN
 REP
 pin_low(pin_d0) ; turn LED on
 delay(500) ; leave LED on for 500/1000 of a sec.
 pin_high(pin_d0) ; turn LED off
 delay(500) ; leave LED off for 500/1000 second.
 LOOP
ENDFUN

The delay() function halts the processor for the specified number of milliseconds (1/1000 second). The delay function
expects to see a number between 0 and 65535 (the range for a 16 bit word). Feel free to modify this program. Control
more LEDs, or maybe increase the blink rate by lowering the delays. If the blink rate is less than about 1/30 of a second,
the LED appears to be on constantly. At this rate, you can alter the relative on and off delays to observe the effects of
PWM. The following code produces a continually glowing LED at about 1/2 brightness.

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 37

DEF tic62_c
LIB fbasic.lib

FUNC none main
BEGIN
 REP
 pin_low(pin_d0) ; turn LED on
 delay(15) ; leave LED on for 15/1000 of a sec.
 pin_high(pin_d0) ; turn LED off
 delay(15) ; leave LED off for 15/1000 second.
 LOOP
ENDFUN

There is another way to turn off the output of a pin besides changing the level of its output. You could use the pin_in()
function as shown below.

DEF tic62_c
LIB fbasic.lib

GLOBAL byte trash ; an 8 bit variable used below

FUNC none main
BEGIN
 REP
 pin_low(pin_d0) ; turn LED on
 delay(500) ; leave LED on for 500/1000 of a sec. =(
trash, pin_in(pin_d0)) ; turn LED off
 delay(500) ; leave LED off for 500/1000 second.
 LOOP
ENDFUN

The pin_in function makes the specified pin an input and reads the level on the pin. A 0 is returned if the level is low
(<2.5 volts) or 255 if the level is high (>2.5 volts). In our example, we do not care what the level is on the pin, we just
want to turn off the output and make the pin an input. The returned value must be assigned to something though, or the
compiler will generate an error because it knows the pin_in function returns a number and expects the program to use that
value. Examples of the pin_in() function are used extensively in later examples to read button presses.

3.2 Construction techniques and power sources
Lets take a minute and talk about the nuts and bolts of making projects. The TICkit module is designed to easily plug into
a solderless breadboard. These are readily available from most electronic parts stores, including Radio Shack. Almost any
6 volt battery can be used as a power source for a TICkit, but make sure you do not use any battery with more than 6
volts output or you will fry the TICkit processor.

There is a power supply and construction area for a TICkit project on the T62-PROJ project board if you are making a
more permenant project. You can just use the power supply on the T62-PROJ board by soldering wires on the +5 and
ground buses and plugging these into a solderless breadboard.

The more reasonable approach is to make or purchase a +5 volt regulated power supply. To make your own, you can use
the following circuit based on a 7805 (LM340). All of the parts required for this supply are readily available from parts
stores including Radio Shack. The unregulated DC source can also be a wall mount transformer supply.

3 Simple Examples FBasic TICkit

38 Protean Logic Inc.

The circuits shown above are suitable for most typical applications. More advanced projects might require regulators
with lower queisent (no load) power consumption to conserve battery power, or you might need more voltages than just
+5 volts. There are many, many good texts on power supply design and countless monolythic IC solutions for any of a
wide range of power requirements. All the TICkit directly needs is a good 5 volts with a reasonably sharp rise time. The
20 MHz TICkit62 itself consumes less than 30ma not counting loads you place on it. The 4 MHz TICkit 62 uses less than
15ma unloaded.

3.3 A simple PWM circuit for controlling a low voltage DC motor.
We have already touched on the idea of pulse width modulation in our blinking LED example. PWM is a way of
producing a variable power/voltage/current output from a switched output. The TICkit 62 has no analog output, only
digital (switched) outputs, so PWM is the only direct way to produce a variable (analog) output. The TICkit 62 has two
methods of producing PWM directly. The first uses a built in function called "cycles()" to produce a square wave of
given duration, frequency, and duty cycle, on any of the general purpose I/O pins. The second method uses some
dedicated hardware built into the TICkit 62 processor for continuously producing a PWM output. This method can only
produce PWM on the pin labeled "A2'CCP". CCP stands for Counter/Capture/PWM. This second method can actually
perform 10 bit PWM.

As this circuit demonstrates, the cycles() method of producing PWM is sufficient only if the circuit will not be loaded
very heavily. There is a relationship which exists between the driving capability of the PWM device (the TICkit and
series resistor), the size of the capacitor, the frequency of the PWM signal, and the load size. If the frequency is high
enough, even larger loads can use this method.

Notice in the program that follows, that each time the cycles function executes, only 20 square waves are generated.
Between each execution of the cycles function, the program does some math and some flow control. Even though these
other program steps take only a small fraction of time, it is enough of a break in the PWM output to create a glitch when
there is much load at all on the output. This type of glitch is virtually unavoidable when using a software emulation
method to generate PWM.

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 39

This program uses the cycles function
to produce a ramping voltage between 0
and 5 vdc. The meter can be a voltage
meter or an O-scope if you have one.

 If R2 is disconnected, the voltage
repeatedly ramps up to 5 volts then
ramps down to zero cleanly. With R2 in
circuit, there is a relatively large spike
at the end of the ramp and the ramp gets
slugish toward 5 volts. These
distortions occur because R2 loads the
circuit when there are program
interruptions in the PWM output.

DEF tic62_c
LIB fbasic.lib

GLOBAL word duty_cycle ; make room for a variable and give it a name

DEF wave_length 256 ; produces a pulse frequency of approx 11KHz
DEF per_level 20 ; produces a ramp requency of approx 550Hz

FUNC none main
BEGIN
 pin_low(pin_d4) ; make pin D4 an output
 =(duty_cycle, wave_length)
 REP
 REP
 cycles(pin_d4, per_level, duty_cycle, wave_length)
 --(duty_cycle)
 UNTIL ==(duty_cycle, 0)

 REP
 ++(duty_cycle)
 cycles(pin_d4, per_level, duty_cycle, wave_length)
 UNTIL ==(duty_cycle, wave_length)
 LOOP
ENDFUN

One way in which to get a larger driving capacity out of this method of PWM is to connect the unloaded PWM output to
some type of linear amplifier like an audio output amp. This works well and eliminates the problem with the limited drive
capacity of the TICkit as well as the "glitches" when the TICkit is in between cycles() functions as the program executes.
The problem with this method is that it is very power in-efficient. When the output of the amplifier is mid-way between
ground and max voltage output, the difference between the max voltage and the output must be dissipated by the
amplifier. This generates a lot of heat and wastes a lot of power. The follwing diagrams show the amplifier arrangement
and compare it to a variable resistor. The power dissipated by the resistor is equal to the product of the voltage it drops
times the current flowing through it. A switch is like a very large value adjustable resistor adjusted to one extreme or the
other. So either it drops zero voltage, or it passes zero current. In either extreme the power dissipated is zero because the
product of anything multiplied by zero is zero. Now, if this resistor is adjusted mid-way, like our amplifier producing a
half voltage output, the power is equal to 1/2 of the max voltage times the current drawn by the load. Just for argument,
assume we are dealing with a 5 volt system and a load that draws 1 amp at 2.5 volts. If the amplifier is outputing 2.5 volts
it must be droping the remaining voltage (2.5 volts). This means that it is dissipating 2.5 watts (2.5 v * 1 amp). Which is
exactly what the load is consuming. Half of our supply energy is wasted and we have a significant heat problem.

3 Simple Examples FBasic TICkit

40 Protean Logic Inc.

Now lets deal with the actual best way to use the TICkit 62 to control a DC motor. This approach uses the built in
hardware to generate continuous PWM. Instead of a built in software routine turning a general purpose pin on and off, the
TICkit 62 uses dedicated hardware to turn pin A2'CCP on and off on the basis of values contained in special registers.
The TICkit 62 provides functions to set these registers and the hardware does the rest independent of what our program is
doing. This is called background functionality.

We control an internal timer, called timer2, to generate the pulse frequency for our PWM. Timer2 has a control, a period,
and a count register. These determine the frequency of the PWM. To make the TICkit 62 actually perform PWM, the
CCP registers must be configured. These are the control and CCP data registers. Once configured, you write to the CCP
data register to control the duty cycle. There are symbolic names for values that can be write to the control register. These
constants are defined in the token library. The program looks like this:

DEF tic62_c
LIB fbasic.lib

GLOBAL word ccp_reg ; CCP register is actually a word (16 bit)
 ; but only the lower byte (8 bits) are used.
 ; The high byte is used internally as a
 ; buffer. The Alias statement lets us
 ; conveniently refer to the low byte
ALIAS byte ccp_duty ccp_reg 0

FUNC none main
BEGIN
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(255b) ; this produces a pulse frequency
 ccp1_cont_set(ccp_pwm) ; of 19531 Hz. Clock frequency/256

 =(ccp_duty, 0b) ; now our CCP unit is set up to do PWM
 REP ; this is the main loop
 REP ; this loop decreases motor speed
 --(ccp_duty)
 ccp1_reg_set(ccp_reg)
 delay(10)
 UNTIL ==(ccp_duty, 0b)

 REP ; this loop increases motor speed
 ccp1_reg_set(ccp_reg)
 delay(10)
 ++(ccp_duty)
 UNTIL ==(ccp_duty, 0b)
 LOOP
ENDFUN

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 41

This circuit controls a
relatively large DC motor
running at a supply voltage of
up to 50 volts follows. This
circuit can conceivably switch
up to 5 amps with this single
switching transistor and
flyback diode.

Realistically, however, you
should only use this circuit for
switching 2 amps or less. If
you are going to switch higher
currents, R1 should be reduced
to 150 ohms.

No interface components are
shown in the diagram.

The transistor, Q1 is operated as a saturation switch. This means that when A2 is high, the current allowed to flow
through the transistor via R1 is significantly greater than the load current divided by the transistors Gain. Said another
way, we are driving the transistor way on. This makes the transistor act like a switch, either it is off and has no current
flow, or it is on and has virtually no resistance. The diode D1 and resistor R2 are designed to drain off the parasitic
flyback voltage created when current is removed from an inductor (the motor in this case). Bypassing the reverse EMF or
flyback voltage safegaurds components and reduces heat load on Q1.

3.4 Controlling relays for motor direction and electric braking
Now that we have a means for varying the drive to a motor or some source like it, we may need to reverse the direction of
the motor or provide a means for braking. The easy way to do this is with relays. Driving relays is actually very easy with
the TICkit. Our circuit will use an IC which has several transistors in them arranged as darlington pairs. This single IC
will provide buffering for up to 7 relays. We only need to drive two for this example.

Relays are simply magnetically operated switches. When the coil is energized, the switch is thrown. Two different types
of relays are used in this example, one is a DPDT (double pole double throw) for motor polarity, and the other is a SPDT
(single pole double throw) for braking. The circuit shown below is very similar to the last circuit except that the relays
change how the resulting power is applied to the motor. The relay K1 in its un-energized position connects the motor to
achieve forward rotation (forward rotation is assigned by convention of the motor's manufacturer . When positive voltage
is applied to the motor lead marked as positive the motor rotates forward). When K1 energizes, the positive of the motor
is connected to ground and the output of the PWM is connected to the negative of the motor, making it rotate in reverse.

Relay K2 controls whether the positive of the motor connects to K1' output or if it is shorted through R3 to the negative
of the motor. When K2 is un-energized, the motor sees power from the PWM and direction control circuits. When K2 is
energized, the motor is connected to a resistive load that impedes the rotation of the motor. If the motor is not shorted
when power is removed, it simply coasts. If the motor is geared there may be some self braking, but braking capabilities
are usually required.

3 Simple Examples FBasic TICkit

42 Protean Logic Inc.

The following program illustrates these types of controls. The program sets up the PWM, turns the motor on at half speed
and rotates it forward for 1 second, removes power and brakes the motor for 3 seconds, reverses direction and powers the
motor at 1/4 speed for 2 seconds, removes power and lets the motor coast for 6 seconds, then repeats the process. A real
control program probably has some type of user interface for setting motor speed and direction instead of a hard coded
routine. You can use the console statements with the download cable to make an elementary front end as a further
programing exercise. An item that is usually found in this type of program is an acceleration and deceleration routine. If
you have delicate instruments or payload handled by the motor, you don't want it damaged by inertial forces as your
motor slams on and off. Play with different ideas and see what you come up with. This is the essential electro-mechanical
motor control circuit.

As you can see from the program, to energize a relay, perform a pin_high() on the specified I/O pin. In this example we
are using a 12 volt supply for both the motor and the relays. If the motor is really large and has large acceleration loads,
you might need to separate the supplies to prevent the relays from dropping when the motor starts. Also, you might use a
larger voltage on the motors, which either the relay's voltage will need to match, or a separate lower voltage supply will
be required for the relays.

DEF tic62_c
LIB fbasic.lib

GLOBAL word ccp_reg
ALIAS byte ccp_duty ccp_reg 0

DEF motor_reverse pin_a4 ; use symbolic name for direction I/O
DEF motor_brake pin_a3 ; use symbolic name for braking
 ; notice that the names imply the
 ; meaning when the I/O is high

FUNC none main
BEGIN
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(255b) ; this produces a pulse frequency
 ; of 19531 Hz. Clock frequency/256

 ccp1_cont_set(ccp_pwm)
 =(ccp_duty, 0b)
 ccp1_reg_set(ccp_reg) ; turn motor off

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 43

 ; now our CCP unit is set up to do PWM
 ; repeat sequence of motor movements.
 REP

 pin_low(motor_reverse) ; motor in forward dir
 pin_low(motor_brake) ; motor is under power
 =(ccp_duty, 128b)
 ccp1_reg_set(ccp_reg) ; power motor at 1/2 speed
 delay(1000) ; wait 1 second.

 pin_high(motor_brake) ; remove power and brake the motor
 =(ccp_duty, 0b)
 ccp1_reg_set(ccp_reg) ; put PWM at 0
 delay(3000) ; wait 3 seconds

 pin_high(motor_reverse) ; motor is reversed
 pin_low(motor_brake) ; release the brake
 =(ccp_duty, 64b) ; power at 1/4 speed
 ccp1_reg_set(ccp_reg)
 delay(2000) ; wait for 2 seconds

 =(ccp_duty, 0b)
 ccp1_reg_set(ccp_reg) ; put PWM at 0
 delay(6000) ; wait 6 seconds
 LOOP
ENDFUN

The solid state equivelent of the relay and PWM transistor is called an 'H' bridge. A schematic for a working H-bridge is
shown above. The resistor values were selected for a 12 volt motor @ 2 amp max. If contA and contB are at the same
logic level, the motor is not being driven. If contA is low and contB is high, the motor spins forward. If contA is high and
contB is low, the motor spins in reverse.

3 Simple Examples FBasic TICkit

44 Protean Logic Inc.

3.5 Closed Loop Circuit Feedback in Control Circuits
Most control systems, especially those dealing with mechanical control, use a feedback system to see if the desired
positioning has indeed taken place. When an action is double checked by a sensor and corrective action is taken the
control mechanism is called "closed loop". This is similar to sending a registered letter through the mail with a return
receipt requested. You can be sure your letter was indeed delivered. Ordinary mail is "open loop" and you rely on the
integrity of the postal system to get your mail delivered, and you tolerate some lost mail.

In the next example a quadrature encoding sensor is used with an index sensor to locate the absolute position of a rotating
shaft. Although we won't put all the electronics for driving the motor in the schematic, these additional components could
easily be incorporated with a motor driving circuit like those talked about earlier.

First, what is a quadrature encoding sensor. An encoding sensor is a collection of switches, either mechanical, optical, or
magnetic that indicate the angular position of a shaft. These types of encoders usually have between 16 and 512 positions
per revolution. Some encoders produce an absolute binary or Gray's coded position output. The one used in this example
is a relative position sensor that produces a quadrature output. The output waveforms look as shown below. When the
sensor rotates in one way, signal A's phase leads signal B's, when the sensor rotates the other way, signal B's phase leads
signal A's. The sensor electronics need to watch these two signals to increment or decrement a counter. We assume the
motor and mechanical inertia of the system prevent the signals from changing too fast. This is a reasonable assumption
when the motor's output shaft is geared down. If there are more than 20 phases per second per signal, dedicated
electronics are needed to count the position.

Earlier we said the quadrature encoder gives relative position. By this we mean an additional signal, called an "index", is
required in the system to reset the position count in the controller. When power is first applied to the system, the
controller must turn the motor on in the direction toward the index mark. When the index signal switches, the controller
must reset the counter. After this step, the controller has the absolute position of the system mechanics.

The diagrams show an endoder circuit and how an optical index is created. The LED is continuously lit and an optical
interrupting fixture is connected to the rotating shaft so that only one position interrupts the beam. When the interrupting
is not in place, the light turns on the photo transistor. Because the resistance of the transistor when turned on is so much
lower than the 22K pull-up resistor, the output is very nearly at ground level. When the optical interruption blocks the
light from the LED, the transistor turns off and has a high resistance relative to the 22K resistor. The output then is very
nearly +5 vdc.

The following program fragment for the circuit follows. Notice that this is not a complete program and needs to be
integrated into a positioning program, like the ones previously shown, to be a complete servo system.

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 45

GLOBAL word shaft_pos ; absolute shaft position
GLOBAL byte prev_sigb ; previous signal B

FUNC none position_count
 LOCAL byte cur_sigs
BEGIN
 =(cur_sigs, dport_get()) ; read all 8 pins of D port
 IF ==(prev_sigb, b_and(cur_sigs, 0y00000100b))
 ; no change to count
 ELSE
 IF prev_sigb
 IF b_and(cur_sigs, 0y00000010b)
 --(shaft_pos)
 ELSE
 ++(shaft_pos)
 ENDIF
 ELSE
 IF b_and(cur_sigs, 0y00000010b)
 ++(shaft_pos)
 ELSE
 --(shaft_pos)
 ENDIF
 ENDIF
 ENDIF

 =(prev_sigb, b_and(cur_sigs, 0y00000100b))
ENDFUN

This concludes our discussion on electro-mechanical control. Many other options exist in this arena from driving
solenoids, to driving stepper motors, to using self contained servo mechanisms like RC servos. Check the release disk and
the Protean web site for sample programs and applications notes. If you are interested in building some of the circuits
talked about in this section, Digi-key Corporation and Jameco Electronics are sources for all parts mentioned in these
circuits. You can find their contact information at the Protean web site.

3.6 Reading and Debouncing Switches.
No matter what your project is, a simple user interface is often required. A user interface usually constists both of a way
to tell the controller what to do, and a way for the controller to tell you what it is doing. We have looked at LEDs as a
way for the controller to indicate its status, but how do we tell the controller what to do, aside from changing its program?

The most common answer to this question is a collection of buttons and switches. This can vary from a few push buttons
to accomplish a "wrist watch" type of interface, to a full 84 key ASCII keyboard.

We touched on the concepts relating to switch input in the rotary encoder example. The basic electrical problem is to
make an SPST button (single pole single throw) produce the voltages required by the digital circuits of the controller.
The solution is to use a resistor to either pull up or pull down the voltage when the switch is open. The next circuit
example uses two switches and two LEDs. As shown in the schematic below, the switch SW1 is wired so that it connects
the pin labeled D1 to ground when it is closed. When SW1 is open, pin D1 sees +5 volts through resistor R1. R1 is
called a pull-up resistor because its function is to pull a digital line high when no other component is driving it low.
Conversly, SW2 is connected so that when closed, it connects the TICkit pin labeled D2 to +5. R2 pulls pin D2 low when
the switch is open, so it is called a pull-down resistor. Both SW1 and SW2 are momentary push buttons, which means
they connect only while a being pressed.

3 Simple Examples FBasic TICkit

46 Protean Logic Inc.

The program shown below uses the circuit above to implement a meaningless program. When SW1 is pressed 10 or more
times, LED2 lights. LED1 will light every time SW1 is pressed. Button SW2 resets LED2 if it is on and restores the
count of button presses to 0.

DEF tic62_c
LIB fbasic.lib

GLOBAL byte press_count 0b

FUNC none main
BEGIN
 REP
 IF pin_in(pin_d1)
 ; do nothing the button is not pressed
 pin_high(pin_d6)
 ELSE
 ; button is pressed
 pin_low(pin_d6)
 IF <(press_count, 10b)
 ++(press_count)
 ELSE
 pin_low(pin_d7)
 ENDIF
 ENDIF

 IF pin_in(pin_d2)
 =(press_count, 0b)
 pin_high(pin_d7)
 ENDIF

 ; try putting the following in the program later
 ; delay(20)
 LOOP
ENDFUN

When you type in this program, leave the delay(20) line commented out, and execute the program. You will find the
results unsatisfactory. The 10 count LED seems to light too soon, sometimes it lights on the first key press. Why is this?

The reason has to do with the physical nature of a switch. Most switches bounce their contacts due to the mechanical
properties of the switch. This means that for a few milliseconds, the contacts are closing and opening for a random
number of times. This TICkit processor is fast enough to catch these very fast bounces which look like repeated key
presses. Now put the delay(20) line in the program by removing the ';'. The delay of 20 milliseconds makes the program
insensitive to key bounce and thus it works just as we expect. Often, there is no need for an extra delay when debouncing
keys in a program. Many times there is enough delay associated with the main control function too make the key scanning
insensitive to key bounce.

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 47

Our next two switch examples involve scanned key matrix. It may seem like a lot of added complexity to scan a matrix of
keys when compared to the simplicity of running each switch to an I/O line on the processor. In fact it is more complex,
but it uses fewer I/O lines as the number of keys grows, and it requires fewer steps to determine if any keys are pressed.
This can save processing time because keyboards spend most of their time with no keys pressed.

Notice in the first diagram that each key connects a unique combination or row and column wires. It is the combination of
row and column that allow the microcontroller to determine which key is pressed. The number of rows or columns may
change in different keypads, but the basic idea remains the same. Your program needs to determine the exact meaning of
each key. Some keys may produce specific actions, other keys may be converted to ASCII characters for display or for
use as data.

The first circuit uses a 16 key matrix arranged as 4 rows of 4 columns. We bring one row of the four low to see if any
keys are pressed on that row. The four column inputs are then read to see if there are any lines low, if so, the
corresponding key is pressed. It is important that only one row output be low at a time to correctly identify a single key
press. The column inputs are all tied high with pull-up resistors to make the inputs high when no key is pressed. If
appropriate, however, the program could make all row outputs low and read the column inputs. If all the column inputs
are still high, none of the keys are pressed. This can be a useful way to determine if program time needs to be devoted to
keyboard scanning. The following program demonstrates the technique used to scan a key matrix directly.

3 Simple Examples FBasic TICkit

48 Protean Logic Inc.

DEF tic62_c
LIB fbasic.lib

GLOBAL byte scan_row 0y11111110b
GLOBAL byte scan_col 0y00000001b
GLOBAL byte scan_number 0b

FUNC none main
BEGIN
 dtris_set(0y00001111b)
 REP
 dport_set(scan_row)
 delay(1)
 IF b_and(dport_get(), scan_col)
 ; no key is down go to next scan
 ++(scan_number)
 IF ==(scan_col, 0y00001000b)
 =(scan_col, 0y00000001b)
 IF ==(scan_row, 0y11110111b)
 =(scan_row, 0y11111110b)
 ELSE
 =(scan_row, <<(scan_row))
 ++(scan_row)
 ENDIF
 ELSE
 =(scan_col, <<(scan_col))
 ENDIF
 ELSE
 ; key is pressed
 con_out(scan_number)
 REP
 delay(10)
 UNTIL b_and(dport_get(), scan_col)
 ENDIF
 LOOP
ENDFUN

There are only a few tricks to key scanning. The first is to allow time between when you write the row scan out and when
you read the scan result in. The second is to make sure that all keys are released after a key press is detected, before you
detect the next key press. If you do not do this, multiple keys depressed accidentally can lead to completely wrong
interpretations about key presses. If you need multiple keys to be pressed simultaneously, like a shift or "alt" key, put all
those keys on a seperate row. You may even wish to put diodes on these keys.

This key scanning circuit also uses a few CMOS logic ICs (integrated circuit). This is to illustrate the use of such circuits
and how they can save microcontroller I/O. This circuit can scan up to 64 SPST normally open switches, and uses only 7

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 49

I/O lines.

DEF tic62_c
LIB fbasic.lib

GLOBAL byte key_value
GLOBAL byte ascii_value ob

FUNC byte key_lookup
 PARAM byte key_in
BEGIN
 =(exit_value, '?')
 IF <(key_in, 10b)
 =(exit_value, +(key_in, '0'))
 ELSE
 IF <(key_in, 36b)
 =(exit_value, +(-(key_in, 10b), 'A'))
 ENDIF
 ENDIF
ENDFUN

3 Simple Examples FBasic TICkit

50 Protean Logic Inc.

FUNC none main
BEGIN
 dtris_set(0y11000000b)
 rs_param_set(debug_pin)
 REP
 =(key_value, 0b)
 =(ascii_value, 0b)
 REP
 dport_set(key_value)
 delay(1)
 IF pin_in(pin_d7)
 IF ==(ascii_value, 0b)
 =(ascii_value, key_lookup(key_value))
 con_out_char(ascii_value)
 ENDIF

 delay(10)
 ELSE
 ++(key_value)
 ENDIF

 UNTIL ==(key_value, 64b)
 LOOP
ENDFUN

The program above is elementary, but shows how to get from key scan numbers to ASCII output.

3.7 Using Protean's I2C Xtender IC for more resources
A common problem encountered when designing controller applications based on single chip controllers is the lack of
I/O or other controller resources. To meet this demand for additional capabilities, a trend has developed toward serially
connected peripheral ICs. One example of this is Protean's I2C Xtender IC. This device is a specially programmed IC that
responds to commands over its Inter-Integrated Circuit (IIC or I2C) bus. This bus connects to a host processor using only
two wires. If a TICkit is the host, the connection can use the EEprom bus wires leaving all 16 of the TICkits general
purpose I/O lines available. Up to 8 or more Xtenders can be connected to a single host via these two lines.

A single Xtender IC gives the system the following hardware resources: 2 CCP I/O pins, a 32 bit real-time seconds
counter, 3 time bases, a unipolar stepper motor controller, 128 bytes of RAM, a buffered RS232 port, a 16 bit counter, 4
100-Hz PWM outputs, and 5 8-bit A/D channels.

A sample connection to an Xtender is shown below. The I2Cclk and I2Cdata lines form the logical connection. In
addition to these lines, the /IRQ line, and /RES of the Xtender are connected to the /IRQ, and EEpwr of TICkit
respectively. A sampling of I/O components are connected to the Xtender in the diagram to demonstrate the A/D, PWM1
(CCP1), button input, general purpose output, 100 Hz PWM and time base outputs.

In the program that follows, every press of SW1 causes a read from the RTC seconds count and a read of A/D channel 1.

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 51

You can vary the input to the A/D channel by changing the position of R1. To make the operation of the A/D clearer, you
can use a multi-turn version of resistor R1. LED D3 follows the status of SW1 except that it inverted to demonstrate
TICkit processing. LED D2 shows the effects of the 100 Hz PWM. LED D1 shows the effects of the PWM1 output
which is a hardware generated, higher frequency pwm. LED D1 and D2 bright and dim out of phase with each other so
that while one gets brighter, the other gets dimmer.

There are many more things that the Xtender can do and programming the Xtender is a subject in and of itself, but this
example shows how simple register write and reads accomplish control of the Xtender. Communication with the Xtender
takes place at the same speed as communication with the EEprom on the TICkit (400 Kbps) so it takes commands very
quickly.

Commands for the Xtender are formed from constants contained in the Xtender's library. Use the '|' vertical bar character
to combine the device number with the specific command. This method keeps the code very clean and readable.

DEF tic62_c
LIB fbasic.lib

LIB xtn73h.lib

GLOBAL byte duty_temp 0b ; duty cycle for D1 and D2
GLOBAL byte button_last 0b ; last status of button
GLOBAL long time_temp ; used to build up the seconds count
GLOBAL byte temp_val ; temporary value for reading/writing

FUNC none main
BEGIN
 delay(500) ; let Xtender get out of power up reset
 ; initialize the Xtender
 IF ==(i2c_read(xtn_dev0 | xtn_reset), 8b)
 ; this is a version H Xtender
 ENDIF

 i2c_write(xtn_dev0 | xtn_pins_out, 0y00000011b)
 i2c_write(xtn_dev0 | xtn_pins_in, 0y00000100b)
 i2c_write(xtn_dev0 | xtn_gp_cont, xtn_pwme_0)
 i2c_write(xtn_dev0 | xtn_ad_con, xtn_ad_pwr | xtn_ad_chan1)
 i2c_write(xtn_dev0 | xtn_tmr2_con, xtn_tmr2_en)
 i2c_write(xtn_dev0 | xtn_tmr2_per, 255b)
 i2c_write(xtn_dev0 | xtn_ccp1_con, xtn_ccp1_pwm)

3 Simple Examples FBasic TICkit

52 Protean Logic Inc.

 REP
 IF b_and(i2c_read(xtn_dev0 | xtn_pins), 0y00000100b)
 =(button_last, 0b) ; button is not pressed
 i2c_write(i2c_dev0 | xtn_pins_low(0y00000010b)
 ELSE
 ; button is pressed
 i2c_write(i2c_dev0 | xtn_pins_high(0y00000010b)
 IF button_last
 ; get real time seconds count and A/D value
 =(temp_val, i2c_read(xtn_dev0 | xtn_clk_tic))
 ; above captures 32 bit count
 =(temp_val, i2c_read(xtn_dev0 | xtn_clk_cnt3))
 =(time_temp, to_long(temp_val))
 =(temp_val, i2c_read(xtn_dev0 | xnt_clk_cnt2))
 =(time_temp, +(*(time_temp, 256b), temp_val))
 =(temp_val, i2c_read(xtn_dev0 | xnt_clk_cnt1))
 =(time_temp, +(*(time_temp, 256b), temp_val))
 =(temp_val, i2c_read(xtn_dev0 | xnt_clk_cnt0))
 =(time_temp, +(*(time_temp, 256b), temp_val))
 =(temp_val, i2c_read(xtn_dev0 | xtn_ad_reg))
 con_string("Time at press: ")
 con_out(time_temp)
 con_string(" Analog Level: ")
 con_out(temp_val)
 con_string("\r\l")
 ENDIF

 =(button_last, 255b)
 ENDIF

 delay(10)
 ; deal with the PWMs
 i2c_write(xtn_dev0 | xtn_ccp1_low, duty_temp)
 i2c_write(xtn_dev0 | xtn_ccp1_high, 0b)
 i2c_write(xtn_dev0 | xtn_pwm_0, com(duty_temp))
 ++(duty_temp)
 LOOP
ENDFUN

3.8 Connecting with Other Resources via I2C
The previous example demonstrated how a TICkit can communicate to an Xtender IC via the TICkit's built in I2C
interface. There are many manufacturers of I2C compatible products and not all of them use protocols which are
compatible with the TICkit's built in read and write formats. This example deals with one such part. This example
connects a TICkit to 8 Dallas DS1621 temperature sensing IC via two TICkit general purpose I/O pins controlled by a
TICkit I2C simulating library. This simulated I2C is not nearly as fast as the protocols built into the TICkit, but it will
accomplish the communications required fairly quickly, certainly as fast as required by most applications. This program
actually implements a complete on-demand temperature acquisition system. A partial schematic for this circuit is shown

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 53

below. An actual application would probably have additional circuitry connected to the DS1621 ICs.

Notice that the two lines used for the I2C bus are pulled high. This is required by the I2C protocol because multiple
sources can drive both the clock and data lines. Also notice how the pins A0, A1, and A2 on each DS1621 are strapped
for a different address. This is how each IC knows which I2C address to respond to. The 'A' pins allow the designer to
specify 3 of the 7 I2C address pins. The other four are hard coded by the manufacturer of the IC. Some ICs internally
specify all 7 address lines and must be ordered with different address (like the Xtender) if more than one will be used on
an I2C bus.

The following program is relatively complex for an example. It shows how defines can be used in conjunction with a
pre-written library to customize the library for the program. This was done with sim_i2c.lib file to specify which pins to
use. We also use the DEF directive to define which pin to communicate with the PC or terminal. In this example, we can
use the download socket on the TICkit module with the download cable, except that we use a terminal program like
WINTERM instead of the download software. This just makes demonstrating easier. We leave it to the reader to examine
the sim_i2c.lib file to see how this all works.

; Program to read the 1621 on command and return the value to a PC
; via a serial port. Simulated I2C routines using GP pins are
; used for this routine because the 1621's protocols are too
; complex for the i2c_read and i2c_write functions.

DEF tic62_a
LIB fbasic.lib

DEF si2c_data pin_a1 ; these are the pins to use for I2C
DEF si2c_clk pin_a2
LIB sim_i2c.lib ; this libarary is un-documented in man.
 ; but is contained on the release disk.

; The 1621 has three pins for strapping an I2C address.
; This means up to 8 1621 devices can exist on the I2C bus
; and be addressed independently.

; The defines below give the addresses for the 8 devices.
; If a read is to be performed, the lsb of the address must be set.

DEF DS1621_dev0 0xA0b
DEF DS1621_dev1 0xA2b
DEF DS1621_dev2 0xA4b
DEF DS1621_dev3 0xA6b
DEF DS1621_dev4 0xA8b
DEF DS1621_dev5 0xAAb
DEF DS1621_dev6 0xACb
DEF DS1621_dev7 0xAEb

3 Simple Examples FBasic TICkit

54 Protean Logic Inc.

; The 1621 has a fairly elaborate command system.
; Following the typical I2C device address/control byte,
; an 8 bit command byte is used to inform the 1621 of the
; nature of the data transfer. The commands and associated
; data are listed below:

DEF DS1621_temp 0xAAb ; This command reads the temperature of the
 ; last conversion. The 1621 will send 2
 ; bytes(16 bits) unless a stop bit is sent
 ; after the first byte. The second byte only
 ; has information in bit 7 because the 1621
 ; only converts 9 bits of data.

DEF DS1621_t_high 0xA1b ; This read/write 16bit register is used
 ; to control the Tout pin of the 1621.
 ; This is the high value used in
 ; comparisons with actual temp reading.
 ; If the actual temperature exceeds this
 ; value, Tout is driven high.

DEF DS1621_t_low 0xA2b ; This read/write 16bit register is used
 ; to control the Tout pin of the 1621.
 ; This is the low value used in comparisons
 ; with actual temp reading. If the actual
 ; temperature is less than this value,
 ; Tout is driven low. This creates a
 ; hysterisis region to prevent critical
 ; oscillations around a single temperature
 ; setpoint.

DEF DS1621_config 0xACb ; This read/write 8 bit register configures
 ; the 1621 for operation. The bits below
 ; explain the config options.

DEF DS1621C_done 0y10000000b ; 1= conversion finished.
DEF DS1612C_thf 0y01000000b ; 1= The device has exceeded the
 ; t_high value. This bit is only
 ; reset by writing the config
 ; register. This bit is unaffected
 ; by the temp falling below TH or TL
DEF DS1621C_thl 0y00100000b ; 1= The device temp has fallen below
 ; the t_low value. This bit is only
 ; reset by writing 0 to it in the
 ; config register. This bit is not
 ; affected by the temp exceeding TL
 ; or TH.
DEF DS1621C_NVB 0y00010000b ; 1= 1621 is busy writing data to the
 ; EEprom. Values written to th or tl
 ; are stored in non volatile memory
 ; and writes can require up to 10 ms.
DEF DS1621C_pol 0y00000010b ; Output polarity for Tout. 1= a high
 ; is Vdd.
DEF DS1621C_single 0y00000001b ; 1= do a single conversion when
 ; start is commanded. 0= do
 ; continuous conversion when
 ; start is commanded.
DEF DS1621_count 0xA8b ; This 8bit register holds the count used
 ; for temp conversion. This read only
 ; register can be used for increased
 ; precision (up to 16bit)
DEF DS1621_slope 0xA9b ; This 7bit register holds the slope count
 ; used for temp conversion. This read only

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 55

 ; register can be used with the count
 ; register to calculate a more precise
 ; temperature (up to 16 bit)
DEF DS1621_start 0xEEb ; A write to this register starts
 ; conversions. The config register
 ; determins if a single conversion
 ; takes place or if continuous conversions
 ; will follow. A bit of the config register
 ; indicates when conversion is complete.
DEF DS1621_stop 0x22b ; A write to this register halts continuous
 ; conversion mode. The current conversion
 ; will finish then the 1621 will remain
 ; idle until the next start command.

DEF pc_serial pin_a7 ; this is the pin to use to communicate to PC

GLOBAL byte rs_command ; this is the command received from PC
GLOBAL byte err_val ; error on rs receive
GLOBAL byte dev_addr ; computed I2C address for 1621
GLOBAL byte config_read ; value of configuration register
 ; as read from the specified 1621
GLOBAL word temp_result ; 16 bit result as read from 1621
ALIAS byte temp_high temp_result 1b ; upper byte of result
ALIAS byte temp_low temp_result 0b ; lower byte of result

GLOBAL byte trash ; dummy variable when making pins inputs

FUNCTION none rs_word
 PARAM word rs_data
 LOCAL word place 10000w
 LOCAL word num
BEGIN
 =(num, rs_data)
 REPEAT
 rs_send(+('0', trunc_byte(/(num, place))))
 =(num, %(num, place))
 =(place, /(place, 10b))
 UNTIL ==(place, 1b)

 rs_send(+('0', trunc_byte(num)))
ENDFUN

FUNC none si2c_comm ; function to start message and send command
 PARAM byte addr
 PARAM byte comm
 LOCAL byte trash
BEGIN
 REP
 si2c_start()
 IF si2c_wbyte(addr)
 STOP
 ENDIF

 si2c_stop()
 LOOP

 =(trash, si2c_wbyte(comm))
ENDFUN

FUNC none main
BEGIN
 rs_param_set(rs_invert | rs_9600 | pc_serial)

3 Simple Examples FBasic TICkit

56 Protean Logic Inc.

 pin_high(si2c_data)
 pin_high(si2c_clk)

 ; configure 1621 for single conversion on command
 si2c_comm(ds1621_dev0, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev1, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev2, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev3, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev4, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev5, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev6, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev7, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 REP
 ; wait for a command from PC (ignore bogus values)
 =(rs_command, rs_receive(0b, 0b, err_val))
 IF err_val
 ELSE
 IF and(>=(rs_command, 'A'), <=(rs_command, 'H'))
 ; valid command calc I2c address and get readings
 =(dev_addr, +(0xA0b, *(2b, -(rs_command, 'A'))))
 si2c_comm(dev_addr, ds1621_start)

 ; repeatedly read config until conversion is done
 REP
 si2c_comm(dev_addr, ds1621_config)
 si2c_stop()
 si2c_start()
 =(trash, si2c_wbyte(b_or(dev_addr, ~
 ~ 0y00000001b)))
 =(config_read, si2c_rbyte(0b))
 si2c_stop()
 UNTIL b_and(config_read, ds1621c_done)

 ; now read the conversion results
 si2c_comm(dev_addr, ds1621_temp)
 si2c_stop()
 si2c_start()
 =(trash, si2c_wbyte(b_or(dev_addr, 0y00000001b)))

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 57

 =(temp_high, si2c_rbyte(0xffb))
 =(temp_low, si2c_rbyte(0b))
 si2c_stop()

 ; now compute result into a normalized 16 bit number
 ; and send result to PC with a return at the end.
 =(temp_result, /(temp_result, 128b))
 rs_word(temp_result)
 rs_send('\r')
 ENDIF
 ENDIF
 LOOP
ENDFUN

3.9 Using a 3-wire interface to control tons of LEDs
In the last examples, we used the I2C bus to communicate to peripheral ICs. The I2C bus is sometimes called the 2-wire
bus. In this example we will use a 3-wire bus, another serial standard, to communicate with a MAXIM IC designed for
driving multiplexed numeric LED displays. The IC is the MAX7219 8-Digit LED Display Driver. This IC drives a matrix
of LEDs so that 256 individual LEDs can be driven from a single 24 pin IC. The magic of this technique is called
multiplexing (time multiplexing to be exact). This means that at any given point of time, only 8 LEDs are being driven,
but each 8 LEDs is driven in quick succession over time. Our eyes interpret this blur as the desired pattern; all LEDs
which received any drive appear to be on continuously. This is similar to our first example where two LEDs blinked
alternately, when there was no delay in the loop, both LEDs appeared to be on continuously. This IC is called a digit
driver because 7 segment LED digits contain 8 LEDs (7 segments and a decimal point) that share a common cathode or
anode. By connecting all the same segments together and calling them rows, and using each of the 8 digits common
cathodes at columns, an 8 x 8 matrix of diodes is created. If you just want to control LEDs and not digits, you can
electrically arrange your diodes in groups of 8 that share a common cathode. This has been done often for Christmas
displays. The circuit for this example is shown below. There are no real surprises here, multiple 7219s can be daisy
chained for more LED drivers yet. The program simply lowers the "load /CS" line, shifts 16 bits of data into the Din pin
using the clk pin, and the communication is complete. A resistor is used with the Iset pin to Vdd. This sets the maximum
drive for any segment

The program for interfacing to the 7219 is also elementary. Each communication sends 16 bits which is comprised of 8
data bits and 4 bits of register address. The remaining 4 bits are unused. The 16 bits are sequentially shifted out the D2
pin and clocked into the 7219 using the D3 pin. The 16th bit shifts out first and each bit is latched in on the rising edge of
clk. A subroutine takes care of shifting out the 16 bits. DEF statements define constants used to refer to each of the
registers in the 7219. The program simply lights every LED in each row then every LED in each column in succession.

DEF tic62_c
LIB fbasic.lib

DEF max7219_data pin_d2
DEF max7219_clk pin_d1
DEF max7219_load pin_d3

3 Simple Examples FBasic TICkit

58 Protean Logic Inc.

DEF max7219_dig0 0x0100w
DEF max7219_dig1 0x0200w
DEF max7219_dig2 0x0300w
DEF max7219_dig3 0x0400w
DEF max7219_dig4 0x0500w
DEF max7219_dig5 0x0600w
DEF max7219_dig6 0x0700w
DEF max7219_dig7 0x0800w
DEF max7219_decode 0x0900w
DEF max7219_intens 0x0A00w
DEF max7219_limit 0x0B00w
DEF max7219_shutdn 0x0C00w
DEF max7219_test 0x0F00w

GLOBAL word cur_row
GLOBAL byte cur_col

FUNC none max7219_send
 PARAM word max_comm
 PARAM byte max_data
 LOCAL word max_result
 LOCAL byte bit_counter 16b
BEGIN
 =(max_result, +(max_comm, max_data))
 pin_low(max7219_clk)
 pin_low(max7219_load)
 REP
 IF b_and(max_result, 0x8000w)
 pin_high(max7219_data)
 ELSE
 pin_low(max7219_data)
 ENDIF

 pin_high(max7219_clk)
 --(bit_counter)
 pin_low(max7219_clk
 UNTIL ==(bit_counter, 0b)

 pin_high(max7219_load)
ENDFUN

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 59

FUNC none main
BEGIN
 ; start by initializing the display
 max7219_send(max7219_decode, 0y00000000b) ; numeric decode
 max7219_send(max7219_intens, 0y00001111b) ; full brightness
 max7219_send(max7219_limit, 0y00000111b) ; all rows (digits) on
 max7219_send(max7219_shutdn, 0y00000001b) ; normal operation
 max7219_send(max7219_test, 0y00000001b) ; test in progress
 delay(500) ; one half second of LED test
 max7219_send(max7219_test, 0y00000000b) ; no test in progress

 REP
 ; test rows independently
 =(cur_row, max7219_dig0)
 REP
 max7219_send(cur_row, 0y11111111b) ; All 8 LEDs on
 delay(250) ; wait 1/4 second
 max7219_send(cur_row, 0y00000000b) ; all 8 LEDs off
 =(cur_row, +(cur_row, 0x0100w)) ; next row
 UNTIL ==(cur_row, max7219_dig7)

 ; test columns independently
 =(cur_col, 0y00000001b)
 REP
 max7219_send(max7219_dig0, cur_col)
 max7219_send(max7219_dig1, cur_col)
 max7219_send(max7219_dig2, cur_col)
 max7219_send(max7219_dig3, cur_col)
 max7219_send(max7219_dig4, cur_col)
 max7219_send(max7219_dig5, cur_col)
 max7219_send(max7219_dig6, cur_col)
 max7219_send(max7219_dig7, cur_col) ; turn of col LEDs
 delay(250)
 max7219_send(max7219_dig0, 0b) ; turn off col LEDs
 max7219_send(max7219_dig1, 0b)
 max7219_send(max7219_dig2, 0b)
 max7219_send(max7219_dig3, 0b)
 max7219_send(max7219_dig4, 0b)
 max7219_send(max7219_dig5, 0b)
 max7219_send(max7219_dig6, 0b)
 max7219_send(max7219_dig7, 0b)

 =(cur_col, <(cur_col))
 UNTIL ==(cur_col, 0b)
 LOOP
ENDFUN

3 Simple Examples FBasic TICkit

60 Protean Logic Inc.

3.10 Using the Bus Routines to Control an LCD module
The example for controlling LEDs is similar to this example in that the goal is to display visual information to the user of
the application. In this example we are connecting the TICkit 62 to an LCD module based on the popular Hitachi 44780
chip set. Most of the LCD alpha-numeric displays on the market use this chip set and it has become the dominant defacto
standard for displays up to 4 lines by 40 characters. These modules are usually available for $10 or less from surplus
outlets like B.G. Micro.

These modules are available with special electronics made by Scott Edwards Electronics and others which allow them to
be interfaced serially. This example does not use any additional electronics and interfaces to the TICkit via a 4 bit serial
bus connection. The direct connection is a more versatile in that it allows reading of the modules memory as well as
writing to it. This is handy for scrolling and other effects. These modules can be connected by either a 4 bit or an 8 bit
bus, but to conserve I/O we sacrifice some speed of bus transfer to retain pins D0 through D3 for other uses. The circuit
for this example is shown above.

The key to this type of module is understanding its internal archetecture and command format. We will discuss that next,
but first we need to discuss the TICkit bus emulation routines. There are three routines available in the TICkit 62 for
using the general purpose pins in a bus simulation. As you might imagine, the D-pins are used for the data lines of the
bus, and the A pins are used for address lines. The function buss_setup() is used to tell the TICkit which of the address
lines will be used for bus functions and which are free for general purpose use. The buss_setup() function also specifies
which data lines are used, either all 8 pins or only the top 4 are used by the bus simulation. An additional option is
available, if only 4 bits of data lines are used. That option is a single or double nibble. The LCD module can use a 4 bit
double nibble bus method instead of an 8 bit bus to transfer 8 bits worth of data.

The bus simulation can only use address lines 0 through 5 for actual address lines, pin A6 is used as a Read/Write control
line and pin A7 is reserved for download purposes. There is also a subtle difference between pins A0-A2 and pins
A3-A5. When the bus is idle or between operations, all the address lines go to zero. To prevent false writes or reads to
multiple registers in a single device, pins A3-A5 go to zeros first. This causes any selected device to become unenabled,
then pins A0-A2 can change with no effect. This method of bus interface is similar to Rockwell's or Motorola's method. It
means that there is a device enable and reading/writing is controlled by a single read/write line. The other common type
of bus interface is the Intel or Zilog method where a seperate line is used for /write and for /read. These pins can be
derived from the select logic and the R/W pin to generate the desired signals. A logic diagram for this is shown above
with this example's schematic.

Now lets take a closer look at the LCD module's electronics and archetecture. Whether the display is 2 x 40 or 4 x 16 or
any line-column configuration in between, the internals of the module are the same. The display memory is organized as
one line at addresses x00 to x27 and the second line at 0x40 to 0x67. If the display has 4 lines, the display memory for
the first line is split between the first and third line, while the display memory for the second line is split between the
second and forth line. This makes writing specific display positions and scrolling the display arcane, but it is doable none

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 61

the less.

In addition to the 160 bytes of display data RAM (DD RAM), there are 64 bytes of user programmable character
generator RAM. If the display is programmed for 5x7 characters, this comes out to 8 custom characters. If the display is
programmed for 5x10 characters, there are only 4 custom characters available. The table that follows shows the mapping
of the character generator RAM (CG RAM) when in 5x7 character mode.

Only the pattern for two of the eight possible custom characters is shown, but the method should be clear from these two
examples. The two characters are programed for an 'H' and the small letter 'g' to demonstrate a descender.

X X X 0 1 1 1 00 0 0 0 1 1 1 1

X X X 0 0 0 0 10 0 0 0 1 1 1 0

X X X 0 1 1 1 10 0 0 0 1 1 0 1

X X X 1 0 0 0 10 0 0 0 1 1 0 0

X X X 1 0 0 0 10 0 0 0 1 0 1 1

X X X 0 1 1 1 10 0 0 0 1 0 1 0

X X X 0 0 0 0 00 0 0 0 1 0 0 1

X X X 0 0 0 0 00 0 0 0 1 0 0 00 0 0 0 * 0 0 1

X X X 0 0 0 0 00 0 0 0 0 1 1 1

X X X 1 0 0 0 10 0 0 0 0 1 1 0

X X X 1 0 0 0 10 0 0 0 0 1 0 1

X X X 1 0 0 0 10 0 0 0 0 1 0 0

X X X 1 1 1 1 10 0 0 0 0 0 1 1

X X X 1 0 0 0 10 0 0 0 0 0 1 0

X X X 1 0 0 0 10 0 0 0 0 0 0 1

X X X 1 0 0 0 10 0 0 0 0 0 0 00 0 0 0 * 0 0 0

Character Pattern
(as in CG RAM)
7 6 5 4 3 2 1 0

CG RAM addresses
(for programming)
7 6 5 4 3 2 1 0

Character Codes
(as in DD RAM)
7 6 5 4 3 2 1 0

There are two addressable registers in a 44780 based module. These are the command register and data register. As you
would expect, the data register is used to read or write data to the DDRAM or CGRAM. The control register is less
obvious. Reads from the control register return a busy flag in bit 7 and the current address counter (DDRAM pointer) in
bits 0 thru 6. The table that follows summarizes the command structure:

3 Simple Examples FBasic TICkit

62 Protean Logic Inc.

Either DD or CG dataData Read1 1Read Data

Either DD or CG dataData to Write1 0Write Data

Reads 44780 status.
B=busy processing,
AAAAAAA = address

count; either DD or CG
RAM address.

B A A A A A A A0 1Read Status

Sets the address for
DD RAM reading and
Writing. Subsequent
read and writes to

data register affect
DD RAM contents.

1 A A A A A A A0 0Set DD RAM
Address

Sets the address for
CG RAM reading and
Writing. Subsequent
read and writes to

data register affect
CG RAM contents.

0 1 A A A A A A0 0Set CG RAM
Address

Controls data bus
width and

 display format.
 D=1 8 bit bus,
D=0 4 bit bus,

double lines (L),
Large Font (F)

0 0 1 D L F X X0 0Interface &
Format

Controls shifting and
cursor movement.

 D=1 shift display,
D=0 cursor move,
R=1 shift right,
R=0 shift left.

0 0 0 1 D R X X0 0Cursor & Display
Shifting

Turn Display on (D),
Turn Cursor on (C),
Blink Cursor on (B).

0 0 0 0 1 D C B0 0Display Control

Sets the cursor
movement direction.
I=1 inc, I=0 dec,

S=0 no shift,
S=1 shift display.

0 0 0 0 0 1 I S0 0Entry Mode

Places cursor at
address 00. Also
un-shifts display

0 0 0 0 0 0 1 X0 0Return Home

Clears display and
returns cursor to home
position (address 00)

0 0 0 0 0 0 0 10 0Clear Display

DescriptionData Bits
7 6 5 4 3 2 1 0

Control
RS R/W

Instruction
name

The program which follows follows a specific sequence of commands to initialize the display. A specific command write
timing pattern is necessary to ensure the display initializes properly.

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 63

DEF tic62_c
LIB fbasic.lib

DEF xbuss_mask 0y00100001b ; These are the address lines used
DEF lcd_data_reg 0y00100001b ; Address of data register
DEF lcd_cont_reg 0y00100000b ; Address of control register

FUNC none lcd_init
BEGIN
 buss_setup(+(xbuss_mask, buss_4bit)) ; setup buss for 4bit
 delay(15) ; wait 15ms
 buss_write(lcd_cont_reg, 0y00110000b)
 delay(5)
 buss_write(lcd_cont_reg, 0y00110000b)
 delay(1)
 buss_write(lcd_cont_reg, 0y00110000b)
 lcd_cont(0y00100000b) ; turn it into 4two

 buss_setup(+(xbuss_mask, buss_4two))
 lcd_cont(0y00101000b) ; assumes 2 line 5x7 font
 lcd_cont(0y00001111b)
 lcd_cont(0y00000001b)
 lcd_cont(0y00000110b)
ENDFUN

FUNC none lcd_cont_wr
 PARAM byte in_val
BEGIN
 WHILE >=(buss_read(lcd_cont_reg), 0y10000000b)
 LOOP ; delay until not busy

 buss_write(lcd_cont_reg, in_val)
ENDFUN

FUNC none lcd_data_wr
 PARAM byte in_val
BEGIN

 WHILE >=(buss_read(lcd_cont_reg), 0y10000000b)
 LOOP ; delay until not busy

 buss_write(lcd_data_reg, in_val)
ENDFUN

FUNC none lcd_string
 PARAM word in_ptr
 LOCAL word temp_ptr
 LOCAL byte temp_val
BEGIN
 =(temp_ptr, in_ptr) ; don't affect calling value
 =(temp_val, ee_read(temp_ptr))
 WHILE temp_val
 lcd_data_wr(temp_val)
 ++(temp_ptr)
 =(temp_val, ee_read(temp_ptr))
 LOOP
ENDFUN

3 Simple Examples FBasic TICkit

64 Protean Logic Inc.

FUNC none lcd_out
 PARAM word lcd_data
 LOCAL word place 10000w
 LOCAL word num
BEGIN
 =(num, lcd_data)
 REPEAT
 lcd_data_wr(+('0', trunc_byte(/(num, place))))
 =(num, %(num, place))
 =(place, /(place, 10b))
 UNTIL ==(place, 0b)
ENDFUN

FUNC none main
 LOCAL word lcount 0
BEGIN
 delay(500) ; wait for 1/2 second for power to settle
 lcd_init()
 lcd_cont_wr(0y00000001b) ; Reset the LCD for good measure
 lcd_string("Hello World...")
 lcd_cont_wr(0y11000000b) ; position to first char on line 2
 lcd_string("Loop Count: ")
 REP
 lcd_cont_wr(0y11001100b) ; 12th char on line 2
 lcd_out(lcount)
 ++(lcount)
 LOOP
ENDFUN

This program just initializes the display, says "Hello World..." and counts loops on the second line of the display. A
simple program, but a good basis for working with these very versatile LCD modules. There are additional LCD
functions contained on the release disk for you to look over.

3.11 Fixed Point Arithmetic.
It is fairly common to deal with fractional results when designing controllers. This is a display or calculation restraint
because the units of measure are directly dictated by the sensors in the controller. A controller with an LCD screen or
other, more elaborate output capabilities should be able to present data in an expected format. The TICkit 62 does not
have a floating point library in its current version, but it still can display numbers with fractional components.

The TICkit 62 has a signed LONG type number which is a 32 bit integer variable type. This size of integer can display 9
digits of accuracy.Assume we are dealing with numbers from our sensors which are no greater than 4096 (12 bit). This
number only requires 4 digits to represent its full range. If we use a LONG type to represent this number during
calculation or display, we can scale the meaning of this number by as much as 100000. In other words, we define one as
being 100000 and we display our numbers with a decimal point 5 places to the left. The number one will display as
1.00000 which is exactly what you expect.

The key to making this easy is the format versions of the long numeric output functions. There are three versions of this
on the TICkit release disk. Function lcd_fmt() is for displaying formatted longs on an LCD, function con_fmt() is for
displaying formatted longs on the debug console, and function rs_fmt() is for displaying formatted longs to an rs232
device. To make clear how these functions work and how they are used, a copy of the con_fmt function is shown below.
The meanings of the format characters are explained in the source for the function.

;Routine to output a Long Number to the LCD display (Signed)

; Meanings of format string characters
; '$' print a $
; '.' print a .
; '#' print a number (leading zeros will not be printed)
; '0' print a number (leading zeros will print from this digit on)
; 'X' hold a place but to not print the number

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 65

FUNCTION none con_fmt
 PARAM long in_data ; Data to print
 PARAM word pointer ; Data format string
 LOCAL long tempnum ; Copy of print data
 LOCAL word hpointer ; Copy of string pointer
 LOCAL long divisor 1l ; Divisor , used by routine
 LOCAL byte tempchr ; Data hold variable
 LOCAL byte first 0b ; flags register
 LOCAL byte tempdig ; temporary digit
BEGIN
 ; this section counts the number of digits and determines what
 ; the most significant digit's divisor will be as a result.
 =(tempnum, in_data)
 =(hpointer, pointer) ; Store format string start
 =(tempchr, ee_read(hpointer)) ; Read format string
 WHILE tempchr
 IF ==(tempchr, '#')
 =(divisor, *(divisor, 10b))
 ELSEIF ==(tempchr, '0')
 =(divisor, *(divisor, 10b))
 ELSEIF ==(tempchr, 'X')
 =(divisor, *(divisor, 10b))
 ENDIF

 ++(hpointer)
 =(tempchr, ee_read(hpointer)) ; Read format string
 LOOP

 ; Check for negative: displays sign and
 ; make number positive for conversion
 IF <(tempnum, 0b)
 con_out_char('-')
 =(tempnum, -(0l, tempnum))
 ENDIF

 ; Check for overflow of number: If divisor too large,
 ; write an * to indicate
 ; Then do conversion on remaining modulus of divisor
 IF >(/(tempnum, divisor), 0b)
 con_out_char('*')
 =(tempnum, %(tempnum, divisor)) ;
 ENDIF

3 Simple Examples FBasic TICkit

66 Protean Logic Inc.

 ; Begin actual conversion and display loop here
 =(divisor, /(divisor, 10b))
 =(hpointer, pointer) ; Store format string start
 =(tempchr, ee_read(hpointer))
 WHILE >=(divisor, 1b)
 IF ==(tempchr, '.')
 con_out_char(tempchr)
 ELSEIF ==(tempchr, '$')
 con_out_char(tempchr)
 ELSEIF ==(tempchr, 'X')
 =(tempnum, %(tempnum, divisor))
 =(divisor, /(divisor, 10b))
 ELSEIF ==(tempchr, '0')
 =(tempdig, trunc_byte(/(tempnum, divisor)))
 =(tempdig, +(tempdig, '0'))
 =(first, 0xffb)
 con_out_char(tempdig)
 =(tempnum, %(tempnum, divisor))
 =(divisor, /(divisor, 10b))
 ELSEIF ==(tempchr, '#')
 =(tempdig, trunc_byte(/(tempnum, divisor)))
 =(tempdig, +(tempdig, '0'))
 IF <>(tempdig, '0')
 =(first, 0xffb)
 ENDIF

 IF first
 con_out_char(tempdig)

 ENDIF

 =(tempnum, %(tempnum, divisor))
 =(divisor, /(divisor, 10b))
 ELSE
 con_out_char(tempchr)

 ENDIF

 ++(hpointer)
 =(tempchr, ee_read(hpointer))
 LOOP
ENDFUN

A typical application for this sort of thing would be to display the output of a 12 bit ratiometric A/D reading in volts.
Rather than show the whole program, only a fragment which relates to this discussion is shown. The variable ad_in is a
word variable that contains the value read for an LTC1298 12 bit A/D in a 5 volt system. This means that 0 is 0 volts and
4095 is 5 volts and all values in between are assumed to be linearly related.

 ; 12 bits can display three decimal points but needs 4 to
 ; completely hold the number. Therefore lets assign one to
 ; be the value 10000. To produce the number of volts from
 ; the value read we need to divide 5 times the reading by
 ; 4096.

 GLOBAL long conv_result

 =(conv_result, *(50000, ad_in))
 =(conv_result, /(conv_result, 4096))
 con_fmt(conv_result, "#.000X")
 con_string(" Volts")

3.12 Using the CCP Input to Measure a Pulse.
The TICkit has a pulse_in function which works very well for measuring pulses provided you know when they are
coming. The TICkit does not need to be doing anything else while it waits for the pulse to occur. This generally is not the

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 67

case in the real world. This next application demonstrates how the CCP output can be used in conjunction with timer1
and some discrete logic to make a very precise pulse measurement system that measures in background while the TICkit
continues its other tasks. The CCP output is configured for PWM output like in previous examples. This time, however,
we are not as interested in the duty cycle as the period. Lets say we are interested in pulses that are very fast and we want
a resolution of 1 microsecond. The oscillator on a 20MHz TICkit produces a period of 0.2 micro seconds. This means we
want to divide this by a factor of 5 to produce a period of 1.0 micro second. This is accomplished by loading the Timer2
period register with a value of 4. The CCP register is loaded with 2 (for a 50% duty cycle) and the output on the CCP pin
will be 1 MHz or have a period of 0.1 us. We then gate this signal with an and gate and some trigger logic which feeds
the Tmr1 pin (pin_a0). Now reset the trigger circuit and examine the contents of timer1 as soon as it remains constant at
any value other than 0, we have measured a pulse. The contents of timer1 is the count of micoseconds the pulse was high.
The circuit for this follows:

The circuit for gating the time base uses two flip flops (special logic components that hold their state until reset). The
TICkit arms the circuit by bringing pin_a3 low and then high. The next rising edge on U1-2clk will turn U1-2 on and
allow the time base to get through to the input of timer1. As soon as U1-2 turned on, U1-1 is clocked and turns on as
well. Because the D input of U1-2 is connected to /Q of U1-1, the next pulse on the signal will turn U1-2 off permanently
before any of the time base can be counted. So, at this point, the count in the TICkit's timer1 represents the amount of
time that the signal was high. The program for this circuit follows:

DEF tic62_c
LIB fbasic.lib

GLOBAL word last_count 0
GLOBAL byte count_done 0b

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(4b) ; set for a period of 1.0 us
 ccp1_cont_set(ccp_pwm)
 ccp1_reg_set(2w) ; set for approx 50% dutycycle

 ; time base is now operational
 pin_low(pin_a3) ; reset trigger circuit
 tmr1_reg_set(0) ; clear timer1
 pin_high(pin_a3) ; arm the trigger circuit

3 Simple Examples FBasic TICkit

68 Protean Logic Inc.

 ; pulse measurement circuit is now active
 REP
 IF <>(last_count, 0)
 IF ==(last_count, tmr1_reg_get())
 ++(count_done)
 ENDIF
 ENDIF

 ; do whatever during the body of the loop.
 ; timing is not critical.
 =(last_count, tmr1_reg_get())
 UNTIL count_done

 con_string("Pulse Width = ")
 con_out(last_count)
 con_string("us")
 REP
 debug_on()
 LOOP
ENDFUN

3.13 Using Timer1 to calculate RPM.
Measurement of RPM or the time between repetitive events is simple. In the last example, the timebase could only be
counted while the signal input was high and during the first cycle following the rising edge of that signal. By eliminating
one of the AND gates, the time base is counted durring the entire first cycle following arming. By taking the reciperocal
of the time, we have the RPM. Doing the reciperocal requires a bit of mathematic manipulation, but nothing too hard for
the TICkit. First, the revised circuit:

The following program shows fixed point arithmetic used to scale the results for 1000 RPS (rotations per second).
Realistically, we should slow our time base, but this shows how sensitive this method can be. We choose a scale where
1000000 represents the number 1.000000. When we divide 1 by the number of microseconds the result is the number of
millions of events that took place in one second. Due to our scale, we can simply move our imagined decimal point to the
right to see how many thousands of events took place per second.

Use the con_fmt() function detailed earlier to display the scaled results on the debug console. The result is shown in
thousands of rotations per second with 2 decimal places of precision. Examine the code to see how this is done:

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 69

DEF tic62_c
LIB fbasic.lib

GLOBAL word last_count 0
GLOBAL byte count_done 0b

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(4b) ; set for a period of 1.0 us
 ccp1_cont_set(ccp_pwm)
 ccp1_reg_set(2w) ; set for approx 50% dutycycle

 ; time base is now operational
 pin_low(pin_a3) ; reset trigger circuit
 tmr1_reg_set(0) ; clear timer1
 pin_high(pin_a3) ; arm the trigger circuit

 ; pulse measurement circuit is now active
 REP
 IF <>(last_count, 0)
 IF ==(last_count, tmr1_reg_get())
 ++(count_done)
 ENDIF
 ENDIF

 ; do whatever during the body of the loop.
 ; timing is not critical.
 =(last_count, tmr1_reg_get())
 UNTIL count_done

 con_string("Pulse Width = ")
 con_out(last_count)
 con_string("us")

 =(rps_result, /(1000000L, last_count))
 con_string("Thousands of Rotations Per Second = ")
 con_fmt(rps_result, "####.00X")
 REP
 debug_on()
 LOOP
ENDFUN

3.14 Interfacing to RS232 devices.
Another very common use for TICkit type processors is to "glue" together various electronic instruments using RS232
format serial connections. Many such instruments are available as a result of Marine use of GPS, Compas and LORAN.
NEMA standards for communications as well as serial interfaces for LCD displays and countless data acquisition
instruments, make the RS232 format one of the most essential controller interfaces.

Even though RS232 is so wide spread, it is a standard which was not initially intended for many of the uses it now
performs. This leads to a rather loose interpretation of the signal names and meanings. Generally, the only standard part
of the RS232 standard is the bit timing of the serial data stream. The voltages, polarities, pin assignments, and connectors
all vary by application. Therefore, when we refer to RS232 in respect to the TICkit, we are refering to the bit timing of
the stream. The TICkit can produce TICkit output that is either intended for standard RS232 drivers like the MAX232 or
1489 driver ICs, or it can produce an open drain inverted output that can, in most cases, be connected directly to RS232
sockets via a resistor.

3 Simple Examples FBasic TICkit

70 Protean Logic Inc.

The following diagrams illustrate RS232 timing and how inverted or non-inverted signals appear on output pins.

There are 5 basic

functions associated with serial communications on the TICkit. There are complex functions available that build on these
functions.

For this manual, we are only going to deal with serial transfer to and from a PC. We use a normal communications
program like WINTERM or PROCOMM to send and receive serial data over a standard COM port. The cable we use is
shown below. Also included are the standard pin assignments for 9 and 25 pin PC connectors.

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 71

229Ring Indicator (RI)

204Data Terminal Ready (DTR)

81Data Carrier Detect (DCD)

75Signal Ground (SG)

66Data Set Ready (DSR)

58Clear to Send (CTS)

47Request to Send (RTS)

32Receive data (RD)

23Transmit data (TD)

1-Frame Ground

DB25DB9Pin Function

The demonstration program is as simple as the circuit. The program initializes the LCD display then displays 20
characters it receives with the rs_receive() function. The the rs_send() function is used by the rs_string() function to send
a message to the PC saying, "send a block beginning with 'A'". At this point, the program uses rs_recblock() to get a
block of 10 characters which are prefaced with the letter 'A'. When all 10 characters are received, the string is displayed
on the LCD. The process is repeated indefinately

DEF tic62_c
LIB fbasic.lib

; These defines used by the LCD libraries
DEF xbuss_mask 0y00100001b ; These are the address lines used
DEF lcd_data_reg 0y00100001b ; Address of data register
DEF lcd_cont_reg 0y00100000b ; Address of control register

LIB lcdinit4.lib
LIB lcdsend.lib
LIB lcdstrin.lib

FUNC none rs_string
 PARAM word in_string
 PARAM word temp_ptr
 PARAM word temp_chr
BEGIN
 =(temp_ptr, in_string)
 =(temp_chr, ee_read(temp_ptr))
 WHILE temp_chr
 rs_send(temp_chr)
 ++(temp_ptr)
 =(temp_chr, ee_read(temp_ptr))
 LOOP
ENDFUN

3 Simple Examples FBasic TICkit

72 Protean Logic Inc.

FUNC none main
 LOCAL byte in_count
 LOCAL byte temp_chr
 LOCAL byte in_array[10b]
BEGIN
 delay(500) ; delay 1/2 second
 lcd_init()
 rs_param_set(rs_invert | rs_9600 | pin_a3)
 =(in_count, 0b)
 REP
 lcd_data_wr(rs_receive(0b, 0b, 0b))
 ++(in_count)
 UNTIL ==(in_count, 20b)

 rs_param_set(rs_invert | rs_9600 | pin_a1)
 rs_string("Send a block beginning with 'A'")

 rs_param_set(rs_invert | rs_9600 | pin_a3)
 =(temp_chr, rs_recblock(0b, rs_cont_addr, 'A',~
 ~ in_array[0b], 10b)

 rs_param_set(rs_invert | rs_9600 | pin_a1)
 rs_string("Block was: ")
 =(in_count, 0b)
 REP
 rs_send(in_array[in_count])
 ++(in_count)
 UNTIL ==(in_count, 10b)

 reset()
ENDFUN

The PC's communication program must be set to the following settings: 9600 baud, the com port number that the cable is
plugged into, no handshake, 8 bits, no parity, 1 stop bit. Play with this program and circuit to get a feel for how things
work. Some people may find that when the TICkit sends data nothing is received by the PC or possibly garbled data is
received. This is because the voltages generated by the TICkit are in the range of 0 to 5 volts. True RS232C states that
the voltages should range between +3 and +9 volts for a "space" (low) and -3 to -9 volts for a "mark" (high). The
following circuit accomplishes an official interface to a PC. The only program change required for this circuit is to
remove the "rs_invert" word from the rs_param_set function calls. The circuit for PC communication, with conforming
drivers is shown here.

3.15 Using the RSB509 to Receive RS232 in Background.
In the previous example, you may notice that there are times when data sent to the TICkit from the PC is lost or garbled.
This is not caused by a driver problem like transmission in the other direction. The cause for this problem is rooted in the

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 73

fact that the rs_receive() and rs_recblock() functions are RS232 emulations. This means that there is no internal hardware
dedicated to monitoring the input. The only time the pin is being monitored for RS232 input is while the function(s) is
executing. Therefore, for the time that the program is dealing with a received byte, it is not listening for the next byte
from the sender.

This problem can be solved in one of three ways. The first is to establish a special protocol so that the PC, or whatever
device is sending to the TICkit, transmits only when the TICkit is ready. An example of such a protocol is used by the
console functions and the debug program. This works well, but is often not possible when using existing designs for
transmitting. Another example is to use the handshake lines in conjunction with the TICkit's receive functions.
Unfortunately, very few RS232 sending devices monitor the handshake lines on a byte by byte basis. They typically
assume that the receiver can take a byte or two more even after the handshake line indicates busy. The only sure way to
receive an asynchronis data stream is to use dedicated receiving hardware.

Protean has created the RSB509 for this purpose. This 8 pin IC works with the TICkit's receive functions, but buffers
received data and only sends to the TICkit when signaled. The circuit for interfacing to the RSB509 follows. Notice that
only one general purpose I/O line is used to connect to the RSB509. The TICkit sends a quick pulse out the interface pin
to signal the RSB509 its readiness. The RSB509 then sends one byte if it has buffered data to send.

The program fragment for this is shown below. This is similar to the previous example except that the pulse protocol has
been included for controlling the RSB509.

LIB rsb509b.lib

FUNC none main
 LOCAL byte in_count
 LOCAL byte temp_chr
 LOCAL byte in_array[10b]
 LOCAL byte in_err
BEGIN
 delay(500) ; delay 1/2 second
 lcd_init()
 rs_param_set(rs_invert | rs_9600 | pin_a3)
 pin_high(pin_a3)
 delay(10)
 =(temp_chr, pin_in(pin_a3)) ; end command pulse
 rs_send('A') ; program RSB509 for an A
 rs_send(rsb509_baud1) ; program for 9600
 delay(100) ; give RSB509 0.1 sec to reset

3 Simple Examples FBasic TICkit

74 Protean Logic Inc.

 =(in_count, 0b)
 REP
 pin_high(pin_a3) ; ask RSB509 for data
 =(temp_chr, rs_receive(0b, 0b, in_err))
 IF in_err
 ; no RSB data
 ELSE
 lcd_data_wr(temp_chr)
 ++(in_count)
 ENDIF
 UNTIL ==(in_count, 20b)

 pin_high(pin_a3)
 delay(10)
 =(temp_chr, pin_in(pin_a3)) ; end command pulse
 rs_send('A') ; program RSB509 for an A
 rs_send(rsb509_baud1 | rsb509_addr) ; program for 9600
 delay(100) ; give RSB509 0.1 sec to reset

 rs_param_set(rs_invert | rs_9600 | pin_a1)
 rs_string("Send a block beginning with 'A'")

 rs_param_set(rs_invert | rs_9600 | pin_a3)
 =(in_count, 0b)
 REP
 pin_high(pin_a3) ; ask RSB509 for data
 =(in_array[in_count], rs_receive(0b, 0b, in_err))
 IF in_err
 ; no RSB data
 ELSE
 ++(in_count)
 ENDIF
 UNTIL ==(in_count, 10b)

 rs_param_set(rs_invert | rs_9600 | pin_a1)
 rs_string("Block was: ")
 =(in_count, 0b)
 REP
 rs_send(in_array[in_count])
 ++(in_count)
 UNTIL ==(in_count, 10b)

 reset()
ENDFUN

Notice that the rs_recblock function is eliminated and rs_receive() is used in the loop instead. This is because the
RSB509 performs the address detection and is, therefore, easier to interface using the byte by byte method.

3.16 Example Summary
This concludes our examples section of the manual. This is the first manual printing to include this chapter, so there may
be errors. Please let Protean know if you find mistakes with the examples given. All programs and circuits are based on
working counterparts, but many examples in this book were modifyed for simplicity and could contain simplification
errors or transcription errors.

FBasic TICkit 3 Simple Examples

Protean Logic Inc. 75

As you build these examples and design your own circuits keep in mind the following list of suggestions. It might save
you some time, aggravation, and money.

1. Whenever you apply power to a circuit for the first time, verify the power connections with an ohm meter. Apply
power briefly to check for shorts, hot components, or smoke. When you are confident your circuit is not
damaging itself, then power the circuit for extended periods.

2. When you have a design worked out, program all unused general purpose pins to be outputs. Or, tie all unused
inputs to either ground or +5 vdc. This prevents floating inputs from oscillating internally and conserves power
and reduces heat.

3. When debugging your program, make use of all the debugging tools. This means writing a stack overflow
routine so that the TICkit informs you in some way (A console message or turning on an LED) that the TICkit's
stack has been exceeded. Single step through your program, or use the debug_on() function in areas of your
program that may contain bugs and trace through them. If an area of problem in your code must run at full
speed, wire in extra LEDs and temporarily modify your code to have it show via the LEDs what is happening.

4. Develop good revision techniques. This means putting comments at the beginning of your program file every
time you make a modification. Make a copy of your program every time you start a new series of modifications
so you can revert back to the last working version if you need to. Only modify a few things at a time, so when
you break a working program it is clear which modification is the source of the problem.

5. Use the Protean Web site and Email extensively. This is the most economical and effective way to get support
from Protean and the best way to get new ideas and learn about new ways of solving old problems.

6. If it seems like the TICkit is just on the edge of being fast enough to accomplish a task, consider putting some or
all of that task into a dedicated peripheral IC. Often adding a few dollars of silicon to a project saves tremendous
costs in software development and product support.

We hope these suggestions are helpful to you. Enjoy your TICkit. We always like to hear how our customers are using
our products, so send us an Email about your projects if you get a chance.

3 Simple Examples FBasic TICkit

76 Protean Logic Inc.

4 FBasic Keywords
4.1 Keywords; Are they commands or what?
Keywords are words that are the basic building blocks of a language. Unlike variables or function names, they cannot be
renamed or created by the programmer. This means they are the quintessential character of the language.

In FBASIC, keywords are used to control compiling of source files, define other data symbols, define procedure symbols,
and to explain the flow control of the finished program. These groupings are referred to as compile directives, definition
or declaration directives, and flow control directives. Statements, Commands and Directives are all synonymous terms in
FBASIC. Keywords also inform the compiler about specifics of the host processor like memory limitations or special
internally generated operations like array dereferencing.

The keywords of FBASIC are summarized in the four groupings that follow:

Compile directives:

ANOTE = places a note in the compiler output.
BREAK = places a break point in debugger symbol file.
WATCH = places a watch point in debegger symbol file.
KEYWORD = informs compiler that symbol is a keyword.
VECTOR = informs the compiler about an interupt vector.
DEFINE = assign a symbol to a textual meaning.
INCLUDE = compile a component source file at this point.
INTERNALS = inform compiler about internal token generation.
LIBRARY = compile a unique source file at this point.
MEMORY = inform compiler about memory limits.
IFDEFINED = affirmative conditional line in compilation.
IFNOTDEFINED = negative conditional compilation line.

Data Definition and Declaration directives:

SIZE = assigns a symbol to a physical data size.
TYPE = assigns a symbol a logical meaning of a data size.
GLOBAL = allocate RAM for a global variable.
LOCAL = allocate RAM for a local variable.
PARAMETER = define parameter for a FUNCTION or OPERATION.
ALIAS = rename a global RAM location as another symbol.
ALLOCATE = allocate EEprom space for data storage use.
INITIAL = define initial contents of an ALLOCATE.
RECORD = define a data structure block for an ALLOCATE.
SEQUENCE = defines a sequence for external structures.
FIELD = define a component field of a RECORD.
ENDRECORD = ends a RECORD block definition.

Procedural Declaration and Definition directives:

FUNCTION = define a function block.
ENDFUNCTION = ends a FUNCTION block definition.
PROTOTYPE = Declares a function symbol with no procedure.
OPERATION = define an operation block.
ENDOPERATION = ends an OPERATION block definition.
EQUIVALENT = define a function to be equivalent to another.

Flow Control directives:

FBasic TICkit 4 FBasic Keywords

Protean Logic Inc. 77

IF = mark the start of a conditional program path.
ELSEIF = mark the start of a alternate conditional path.
ELSE = mark the opposite condition program path.
ENDIF = mark the end of conditional program paths.
REPEAT = mark start of an unconditional loop construct.
WHILE = mark start of a loop and define the looping test.
UNTIL = mark end of a loop and define the exit test.
LOOP = mark end of an unconditional loop construct.
SKIP = define condition to skip to the end of a loop.
STOP = define condition to exit a loop.
CALL = calls another function. (default keyword)
EXIT = exit current function and return to calling function.
GOTO = execute at specified label.
GOSUB = execute at specified label and RETURN here.
RETURN = return to line following prior gosub.

Flow Control directives can only appear in special blocks called "procedure blocks". The blocking concept is used by
FBASIC to keep things neat in a source file. Procedure blocks are started using the FUNCTION directive and end with
the ENDFUN directive.

The other type of blocking structure in FBASIC is RECORD. This is used to collectively refer to a group of data items by
one symbolic name and assign the initial values to be contained in this group when the program starts. This is useful for
data storage applications such as lists.

Elements of a language that are not keywords are the standard libraries. Libraries are simply a set of pre-written functions
and definitions that are assumed to be useful to programmers in that language. Library functions can be overridden by the
programmer for any specific task. The standard libraries of functions and data types for FBASIC are summarized later in
this manual.

Detailed information on each keyword directive follows.

ALIAS
ALIAS: Alias declaration of internal RAM storage.

ALIAS <size_or_type> <variable_name> <overlay_name> (<overlay_offset>)

This directive is used outside of procedure blocks. Use this directive to refer to a previously allocated RAM storage
location by a name different than that used for the initial allocation. Use of aliases can conserve RAM space in conditions
where the programmer knows that there will be no conflict between the two names for the location. ALIAS can also be
used to overlay variables of smaller size over a variable of larger size. This is useful for building up or deconstructing
larger types. (This syntax is dated, use the GLOBAL or LOCAL directives with the ALIAS option instead).

ALLOCATE
ALLOCATIONs: Used to reserve program memory locations

ALLOC(ATE) <initial_offset>
ALLOC(ATE) <size_type_or_record> <allocation_name> ('[' <count> ']')

This statement can only appear outside of procedure blocks. Allocate directs the compiler to reserve sufficient program
memory to store count items of the size given. The symbolic name will be a constant that points to the first address of this
reserved area. This is useful for symbolic representation of stored data. The ALLOCATE directive can also be used to
indicate to the compiler where to begin the data storage in EEprom. Normally the compiler places all allocations and
strings immediately following the program code in the EEPROM. The initial offset form of ALLOCATE can be used to
force the storage to begin at a different location. This can be useful if part of the EEPROM is write protected.

See RECORD and FIELD for more information on structures in EEPROM

SEQUENCE is a similar directive but does not effect EEPROM allocation at all. Use SEQUENCE instead of
ALLOCATE if symbolic addresses are being assigned to memory other than the EEPROM of the TICkit.

4 FBasic Keywords FBasic TICkit

78 Protean Logic Inc.

ANOTE
ANOTEs: Used to place text in the compiler output

ANOTE <any single line of text>

This statement can only appear outside procedure blocks. ANOTE directs the compiler to place the following text in the
status output of the compiler. This action has no effect on the output token file. This directive can be used to indicate
which libraries or include files are compiled for any given program.

BRANCHON
BRANCHONs: Used to create index based flow alternations (computed paths)

BRANCHON <any byte value>
 <default procedural statements execute when ‘any byte value’ matches no BRANCH constants>
BRA(NCH) <numeric_constant1>
 <exclusive procedural executes path when ‘any byte value’ is equal to ‘numeric constant1’
BRA(NCH) <numeric_constant>
 <exclusive procedural executes path when ‘any byte value’ is equal to ‘numeric constant2’
.
.
.
ENDBR(ANCH)

This statement can only be used within procedural blocks. BRANCHON is used to create program flow branches where
the program flow is determined from a numeric value. This is accomplished by using a computed jump table internally.
This method of code alternation is very efficient in both code size and speed as long as the value the branches are based
upon are mostly sequential. The starting and ending value does not effect jump table size, but any unused BRANCH
values will result in a jump table entry to default which can become code space inefficient if there are a large number of
unused BRANCH values. Any procredural statements that are placed between the BRANCHON statement and the first
BRANCH statement are executed as a default. In other words, if not BRANCH values match the value given to the
BRANCHON statement, any procedural statements prior to the first BRANCH statement will execute. All BRANCH
blocks are exlusive execution blocks, which means after the code for a BRANCH executes, execution resumes
immediately following the ENDBRANCH statement. BRANCHON can be nested with any other procedural block such
as IF statements or WHILE loops.

Note: BRANCHON support begins in HUBBUB versions of the TICKit.

BREAK
BREAKs: Used to indicate a default break point to the debugger

BREAK <any procedural keyword and statement>

This statement can only appear inside procedure blocks. BREAK directs the compiler to place a break point symbol in
the symbol file. This action has no effect on the output token file, but instructs the debugger that this line is a break point
when the debugger starts. Only the first 10 default break points can be recognized by the debugger.

CALL
CALL: Evaluates an expression.

(CALL) <expression_with_no_return_value>

This statement is procedural and can appear only after the BEGIN statement in a procedure block. The CALL keyword is
optional because any first word on a line which is not a keyword will be interpreted as a CALL statement. This statement
will cause the following expression, of SIZE none, to be evaluated. If the first function or operation of the expression has
a return value, an error will be returned.

FBasic TICkit 4 FBasic Keywords

Protean Logic Inc. 79

DEFINITION
DEFINITIONS: Textual equates in the source code.

DEF(INITION) <symbol_name> <any_text>

This directive is valid anywhere, but is a global equate only when it appears outside a procedure block. This is used to
make code more readable and to eliminate arcane numeric references. DEFINED symbols can also be used to
conditionally compile certain sections of a program. See IFDEFINED and IFNOTDEFINED for more details on
conditional compilation.

EQUIVALENT
EQUIVALENT: Defines a function prototype that uses a procedural section of an existing function

FUNC(TION) <size_or_type> <function_name>
parameters....
locals...

EQUIV(ALENT) <existing_function_name>

This directive is not currently implemented for the TICkit57 and TICkit62. The Equivalent directive is used when special
versions of existing functions are required that use more specific parameter and return value types.

EXIT
EXITs: Returns to the line CALLing function.

EXIT

This statement can only appear within a procedural block. EXIT will cause the execution to resume at a point
immediately following the reference to the function that EXIT appears in. If the function has a return value, the value
contained in the variable "exit_value" will be passed back to the calling reference as the value of the function. Therefore,
to return a value for a function, assign the desired return value to the variable "exit_value" immediately before executing
an EXIT statement. An implicit EXIT occurs whenever ENDFUNCTION is encountered.

FIELD
FIELDs: Defines subordinate elements of a RECORD or ALLOCATION.

FIELD <type_or_record> <symbol_name> ('[' <count> ']')

This directive is used in RECORD blocks to define data elements inside the larger structure. The "count" is optionally
used to make an array out of the field. The default count is one.

FUNCTION
FUNCTIONs: External function code definition.

FUNC(TION) <size_or_type> <function_name>
parameters....
locals...

BEGIN
procedural statements....

ENDFUN(CTION)

This directive can only be used outside of procedure blocks and defines a function. Any PARAMETERs, LOCALs, and
DEFINEs defined within the FUNCTION block are only defined to procedure statements within that FUNCTION block.
If the function has a return value, a local variable called "exit_value" of the function's type will exist for the duration of
the function. Assign the desired return value "exit_value" immediately before EXIT or ENDFUNCTION.

4 FBasic Keywords FBasic TICkit

80 Protean Logic Inc.

GLOBAL
GLOBALs: Global internal RAM storage allocation.

GLOBAL <size_or_type> <variable_name> ('[' <count> ']') (<initial_value(s)>)
 or
GLOBAL <size_or_type> <variable_name> ALIAS <variable_name> (<offset>)

This directive is used outside of procedure blocks. This directive allocates Global data from the bottom of memory as
opposed to the internal RAM stack which grows down from the top of memory. Therefore, usage of global values
reduces the available stack for subroutines and local values. Because local allocations are returned to the RAM pool after
a function finishes executing, local variables are often more memory efficient than global values. Global values execute
faster however, and may even be more space efficient if the variable can be safely re-used in multiple functions. An array
of elements can be defined by using the '[]' characters and an element count. Exercise care when defining arrays not to
exceed the memory capacity of the device. The "WATCH" directive may be used at the beginning of a GLOBAL
statement to place a watch point symbol in the symbol file. Upon startup, the debugger will automatically watch up to
five GLOBAL values with WATCH directives.

The ALIAS option can be used to make the defined variable overlay an existing variable. This can prove useful for
building up larger types or for creating special combined types.

GOSUB
GOSUB: Executes a sub-section of a function as a sub-routine.

(GOSUB) <local_line_label>

This statement is procedural and can appear only after the BEGIN statement in a procedure block. Program execution
will shift to the line beginning with a label that matches "local_line_label". This line must be in the same function as the
GOSUB. Execution continues from that line until a RETURN statement is encountered, and resumes immediately
following the last GOSUB statement executed. Care must be exercised when using GOSUB. If GOSUB and RETURN
are not matched properly, the program's stack could be destroyed, leading to unpredictable results. The preferred method
for performing subroutines within FBASIC is to use multiple functions with CALL statements.

GOTO
GOTO: Causes the flow of the program to alter.

GOTO <local_line_label>

This statement is procedural and can appear only after the BEGIN statement in a procedure block. This directive causes
execution within the program to jump to the location specified by "local_line_label". The line_label must be in the same
procedure block as the GOTO.

IF
IFs: Creates alternations and branches in the program flow.

IF <logical_expression>
procedural statements....

(ELSE or ELSEIF <logical_expression>)
procedural statements....

ENDIF

The IF statement is procedural and can only appear after the BEGIN statement in a procedural block. Use
this directive to change the flow of a program based on a condition, usually a variable comparison. The ELSE or ELSEIF
are optional extensions to this directive. This directive can be lexically nested.

FBasic TICkit 4 FBasic Keywords

Protean Logic Inc. 81

IFDEFINED
IFDEFINEDs: Conditionally compile a line.

IFDEF[INED] <define_symbol> [any other directive]

The IFDEF statement is a compiler directive that and can appear anywhere. The directive which follows on the same line
as the IFDEF will only be executed if the referenced <define_symbol> exists. If the symbol does not exist, the line will
not be compiled. This line can be used in conjunction with the INCLUDE or LIBRARY directives to conditionally
compile large sections of a program.

IFFORK
IFFORKs: Execute the contained block if a second task could be created

IFFORK <function_name>
<procedural statements>
ELSE
<procedural statements>
ENDIF

The IFFORK statement will create a concurrent task which will execute the function specified as long as there are
sufficient resouces to do so. If the fork was successful, the procedural statements within the block will execute in the
parent task while the forked task operates, concurrently. If the specified function cannot be forked, the ELSE block of
procedural statements will execute and no secondary task is initiated.

IFFORK is the more sophisticated way to fork a second concurrent task. It has its own stack space which does not take
away from the primary task’s stack. However IFFORK is only supported in HUBBUB level TICKit processors. Some
earlier versions of the TICkit supported function based multi-tasking which split the primary task’s stack space in two.
Task switching was managed by an interrupt routine executing the task_switch function. In addition to fragmenting the
stack space of the parant task, function based task switching did not provide for the sleep function to allow background
task priority.

See the section of this manual on “Multi-tasking” for more details on concurrent programming benefits and techniques.

IFNOTDEFINED
IFNOTDEFINEDs: Conditionally compile a line.

IFN[OT]DEF[INED] <define_symbol> [any other directive]

The IFNOTDEFINED statement is a compiler directive and can appear anywhere. The directive which follows on the
same line as the IFNOTDEFINED will only be executed if the referenced <define_symbol> does not exist. If the symbol
exists, the line will not be compiled. This line can be used in conjunction with the INCLUDE or LIBRARY directives to
conditionally compile large sections of a program.

INCLUDE
INCLUDEs: Compile directive to include a subordinate file at this point.

INCLUDE <source_file_name>

The INCLUDE directive is used to merge another source file in the compilation of the program. This is useful when
organizing large programs or for special methods of repeating code in a program. The INCLUDE directive differs from
the LIBRARY directive in that the file will be included regardless of whether or not the file was included in the compile
previously. Using INCLUDE with IFDEFINED and IFNOTDEFINED statements creates a powerful conditional
compilation capability.

4 FBasic Keywords FBasic TICkit

82 Protean Logic Inc.

INITIAL
INITIALs: Set an initial value for EEprom Allocations.

INIT(IAL) <full_field_name> <initial_value> (<additional_values>...)

The INITIAL statement is used to place initial values into EEprom allocations. This can be very useful for creating
tables, etc. The "full_field_name" must include the name of the allocation, all records, and the field name to completely
identify the field. At least one initial value is required. If the field has a count greater than one, then additional initial
values may be included up to the count of the field. For byte type field, the special constant format ' ' may be used to
specify a string of initial values. This format differs from the " " constant format which evaluates to a word. The ' ' format
evaluates to multiple bytes.

INTERNALS
INTERNALS: Species token code for internal operatoins

INTERNALS <token codes> ...

This directive appears only in the token library for the TICkit interpreter. The list of tokens instructs the compiler how to
generate array dereferences and other token references generated automatically by the expression generator.

KEYWORD
KEYWORDs: This directive is used to inform the compiler that a symbol is reserved.

KEYWORD <reserved_symbol>

This directive appears only in the "fbasic.lib". A user may wish to use this directive to reserve symbols that will
eventually appear in a program. Normally, this directive will not be used except in the standard library.

LIBRARY
LIBRARY: Textually included source code.

LIB(RARY) <file_name>

This directive is valid anywhere in the body of the code, but use in the beginning of a program aids readability. The
"filename" is the DOS text file which is to be included in the compile at this point in the source. LIBRARY and
INCLUDE differ only in the case that a file name is used that has previously been used in the same compile. LIBRARY
will ignore a the request if a file_name appears twice. INCLUDE will process the file regardless of whether or not it had
appeared in the compile previously.

LOCAL
LOCALs: Local internal RAM storage allocation.

LOCAL <size_or_type> <variable_name> ('[' <count> ']') (<initial_value(s)>)
 or
LOCAL <size_or_type> < variable_name> ALIAS <variable_name> (<offset>)

This directive is used inside of program blocks prior to the BEGIN statement. This directive allocates LOCAL data from
the bottom of memory. A pointer to that memory location is placed on the internal RAM stack which grows down from
the top of memory. Because local allocations are returned to the RAM pool after a function finishes executing, local
variables are often more memory efficient than global values. Global values execute faster however, and may even be
more space efficient if the variable can be safely re-used in multiple functions, possibly using the ALIAS statement.
Arrays of LOCAL variables can be defined by using the '[]' characters and an element count. Take care not to exceed the
stack space of the device when allocating arrays. LOCAL values exist only while the program is executing, for this
reason, current debugger implementations are not able to watch or examine LOCAL values by symbol name.

FBasic TICkit 4 FBasic Keywords

Protean Logic Inc. 83

The ALIAS option can be used to make the defined variable overlay an existing variable. This can prove useful for
building up larger types or for creating special combined types.

MEMORY
MEMORY: Specify memory constraints for a host processor

MEMORY HIGH <upper RAM limit>
MEMORY LOW <lower RAM limit >
MEMORY EEPROM <sequence breaks in EEprom>

This directive usually appears in the token library for a device. It tells the compiler how to assign global memory and
when to generate warnings about EEprom sequence breaks. The values of these limits are defined by the version of the
TICkit token interpretter and the type of size of each EEprom connected to it.

OPERATION
OPERATIONs: Internal operation code definition.

OPER(ATION) <size_or_type> <operation_name>
parameters....

BEGIN hexadecimal values....
ENDOP(ERATION)

This directive can only appear outside of code blocks and informs the compiler of internally implemented functions.
These functions are identical to source level functions except that they operate faster and must be implemented in the
token interpreter.

PARAMETER
Parameters: Define the parameter list and symbolic argument names for functions or operations.

PARAM(ETER) <size_or_type> <argument_name>

This directive can only be used inside of procedure blocks between the OPERATION or FUNCTION directive and the
BEGIN directive. PARAMETERs inform the compiler how to handle the argument or parameter list for the FUNCTION
or operation in which they appear. PARAMETERs also assign a symbolic name to the argument so that they may be used
indirectly by the FUNCTION in which they appear. PARAMETERs are temporary names that pointer to the variables
used in the function call.

PROTOTYPE
PROTOTYPEs: Declare a function without creating the procedure.

FUNC[TION] <return_type> <function_name>
parameters...

PROTO[TYPE]

The PROTOTYPE directive is used to define a function symbol without actually defining the procedure associated with
the function. This is useful when doing recursive applications, or any other time that a function will be referenced before
it is defined. The FBASIC single pass compiler characteristic requires that programs be written in a "top down" style.
The use of PROTOTYPES for all functions in a program frees the programmer from the "top down" requirement.

4 FBasic Keywords FBasic TICkit

84 Protean Logic Inc.

RECORD
RECORDs: Used for making symbolic maps of external memory allocations

REC(ORD) <record_name>
fields....

ENDREC(ORD)

This block can only appear outside of a procedure block. Record blocks are used to declare relative locations of items
logically grouped in EEprom memory, or other memory areas. The structures can not be nested, but may lexically recurs.
The defined structures can then be declared using the ALLOCATE statement, which actually reserves program space for
the records. When a record symbol appears in an expression, it evaluates to a constant of SIZE "word_size". This
constant can then be manipulated as a pointer to any sort of memory device.

REPEAT
REPEATs: Marks the beginning of a loop with no looping condition.

REPEAT
procedural statements....

(STOP)
procedural statements....

(SKIP)
procedural statements....

UNTIL <logical_expression> or LOOP

This directive causes the enclosed block to repeat while the repeat_condition is true or until the exit_condition is true.
The STOP directive will exit the body of the loop and the SKIP directive will cause the loop to perform the next iteration
without finishing the body of the loop by skipping to the statement at the bottom of the block. Looping directives can be
lexically nested.

RETURN
RETURNs: Returns to the line immediately following the last GOSUB.

RETURN

This statement can only appear within a procedural block. RETURN will cause the execution to resume at a point
immediately following the last GOSUB that was executed. Because return addresses are stored on the stack by the
GOSUB statement, and removed by the RETURN statement. The number of RETURNs executed in a function must
exactly match the number of GOSUBs executed in a function.

SEQUENCE
SEQUENCEs: Establish a sequence for external storage.

SEQ(UENCE) <sequence_number> <initial offset>
SEQ(UENCE) <sequence_number> <size, type or record> ~
 ~ <symbol_name> ('[' <count> ']')

This statement can only appear outside of procedural blocks. SEQUENCE is used to establish either a beginning offset
for a given sequence number or to indicate the location of a storage element or array at the current offset for the sequence
number. The offset is increased to the first byte past the storage required if a storage element or array is referenced.
SEQUENCE is very similar to ALLOCATE except that it does not effect the EEPROM allocation and that there can be
more than one sequence for a program. Up to 10 sequences, each uniquely identified by a sequence number, can be used
for a program in this version of the FBASIC compiler.

<count> is used to create an array for the <symbol_name> at the current sequence offset.

FBasic TICkit 4 FBasic Keywords

Protean Logic Inc. 85

SIZE
SIZEs: Define a symbol to one of the intrinsic data sizes of the compiler.

SIZE <size_symbol> <number_of_type_size>

This directive appears in the "fbasic.lib" file. This directive is used to assign a symbol which is easier to remember and
more concise than the numbers that the compiler recognizes for size designators. The default sizes are: none, byte, word,
and long. None uses no storage, byte uses one 8 bit location, word uses two 8 bit locations, and long uses four 8 bit
locations. Only long is arithmetically signed.

TYPE
TYPEs: Define a logical meaning to a data size.

TYPE <symbolic_meaning> <size_symbol>

This directive, which is similar to the SIZE directive, is used to more loosely assign a meaning to a data item. The
symbolic meaning does not override the SIZE of the data item but will prevent another data item which has a different
symbolic meaning from being assigned to this data item. By using these restricting measures, the compiler can prevent an
accidental misuse of data items of the same physical size, but different logical meanings.

VECTOR
VECTORs: Infrom the Compiler about hardware Interrupt Vectors in TICkit memory. Vectors are attributes of the
Microprocessor and the Interpreter firmware.

VECTOR <symbolic_name>

This directive appears only in the standard token library. Each use of the VECTOR statement defines a function name to
be associated with the physical vector of the processor and the processor firmware. The first VECTOR directive assignes
the first vector slot. Each subsequent appearance of the VECTOR directive assigns subsequent vector memory locations.

WATCH
WATCHs: Marks data element as a watch point in subsequent debugging sessions

WATCH GLOBAL <type> <symbol_name> (<initial_value>)

The WATCH directive is used to place a symbol in the watchpoint list of the debugger. Using this directive may save
time when debugging more complex programs. Only global values can be watched by the debugger in current versions.

WHILE
WHILEs: Marks the beginning of a loop with a condition to loop.

WHILE <logical_expression>
procedural statements....

(STOP)
procedural statements....

(SKIP)
procedural statements....

UNTIL <logical_expression> or LOOP

This directive causes the enclosed block to repeat while the repeat_condition is true or until the exit_condition is true.
The STOP directive will exit the body of the loop and the SKIP directive will cause the remainder of loop to be omitted
by skipping to the statement at the bottom of the loop. Looping directives can be lexically nested.

4 FBasic Keywords FBasic TICkit

86 Protean Logic Inc.

5 Standard Function Library
5.1 Standard Libraries: "....What do they contain, Books?"
A programming language like FBASIC is very lean. It contains only the basic building blocks of programs, but very few
functional parts. The standard library provides most of the functinality of FBSIC. The standard library is a set of
functions, operations, definitions, and declarations. The standard library contains things like math functions, input and
output functions, bit manipulation, etc.

Physically, the standard library is a collection of program fragments the author of the language assumes are useful to the
programmer. The programmer can call functions from the standard library that are required for a larger application. Also,
the programmer may decide that certain functions of the standard library are inappropriate or unnecessary for a given
application. For this reason, the library is broken down into smaller library files and organized in a sort of hierarchy
where library files depend on functions in other files to get the job done. The programmer must determine which library
files to reference in his program in order to make an efficient program.

Normally, the programmer will use a define statement and the FBASIC.LIB file to include the appropriate standard
library for the processor revision being used. Therefore, the following two lines usually appear as the first directives of a
program:

DEF tic62_a
LIB fbasic.lib

As mentioned above, a programmer may wish to have greater control over which elements of the standard library are
included in a program. When this is the case, the programmer must pick and choose elements from the library files. This
is easy to do since each library file can be examined and modified with a text editor.

The standard library also includes a reference to extended functions not in the firmware of the processor. To exclude
these libraries from your program use the following define before the reference to fbasic.lib

DEF tic62_a
DEF operations_only
LIB fbasic.lib

5.2 Standard Library Summary
The following sections of the manual divide the functions of the standard library according to function groups. The group
headings are:

1. Assignment and size conversion functions
2. Mathematical Functions
3. Bit manipulation functions
4. Logical relational test functions
5. Input and output functions
6. EEprom read and write functions
7. IIC peripheral funtions
8. Parallel Buss (LCD) functions
9. Timing and Counting Functions

10. RS232 functions
11. Console functions
12. System, interrupt and miscellaneous functions
13. Integrated peripheral functions

Library organization is as follow. Notice that including fbasic.lib automatically includes the proper token library and the
proper token extension library. You need to explicitly include any other library (like rs_fmt.lib) if you want the functions
in it. Simply add LIB rs_fmt.lib into your program before you reference any functions of that library. Also be aware of
any DEF statements that the library may expect. All libraries can be viewed with a text editor.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 87

fbasic.lib = FBASIC keyword and size declaration.
token.lib (tic62c.lib) = token interpreter operation declarations.
 tokext.lib (ticx62c.lib) = Extension functions. Use DEF opertions_only to exclude.

ee.lib = larger size EEprom functions
rs232.lib = rs232 string and numeric functions

rsstring.lib = send a null terminated string
rsbyte.lib = byte to string of numbers
rsword.lib = word to string of numbers
rslong.lib = long to string of numbers
rsfmt.lib = formatted long to string of numbers

con.lib = consolse string and number functions
constrin.lib = send a null terminated string
conbyte.lib = byte to string of numbers
conword.lib = word to string of numbers
conlong.lib = long to string of numbers
confmt.lib = formatted long to string of numbers

lcd.lib = LCD buss functions for controlling HD44780 based LCD modules
lcdinit.lib = initialize the LCD and buss
lcdstrin.lib = send a null terminated string
lcdbyte.lib = byte to string of numbers
lcdword.lib = word to string of numbers
lcdlong.lib = long to string of numbers
lcdfmt.lib = formatted long to string of numbers
lcdchar.lib = character generator programming function
lcdscroll.lib = scrolling routines to make an LCD look like a terminal

5.3 Additional Libraries Summary
When an additional library is included, the minimum size of your program increases because all functions referenced in
the extend library are put into your program whether you use them or not. Usually, you use the extend library when you
want to develop a program quickly.,.

Various libraries may be placed on release disks. These libraries are often hardware dependent. Other extended libraries
can be found on the Protean BBS. Libraries for serial A/D chips and serial clock chips are a few examples. You can use a
simple text editor to view these library files. Notes on their use will be contained as comments in the library files. Do not
be intimidated by library files, they are simply small functions and provide a nice way to increase the number of tools
available to you. Every time you write a function for dealing with a specific type of hardware device or any time you
develop a section of code you think you will re-use, put that function into a library file so you can access it easily in
future programs.

5.4 Assignment and Size Conversion Functions
Assignment is the most basic of programing functions. The contents of one memory variable or constant is copied into
another memory variable. The truncate functions simply drop bytes of higher order than the result requires. This is, in
essence, a modulus function of either 256 or 65536. The to_xxx functions append 0 value bytes to the higher order bytes
of the result. The return value of to_xxx functions have the same numeric value as the argument only in a larger variable
size.

= Assignment
none =(byte dest, byte source)
none =(word dest, word source)
none =(long dest, long source)
none =(float dest, float source)

Multi-precision assignment function. The contents of the source value is copied into the destination.

5 Standard Library FBasic TICkit

88 Protean Logic Inc.

trunc_byte Truncates a larger size to a byte
byte trunc_byte(long arg)
byte trunc_byte(word arg)

Truncates the argument to a byte size. Any information in the more significant bytes is discarded.

trunc_word Truncates a larger size to a word
word trunc_word(long arg)

Truncates the argument to a word size. Any information in the more significant bytes is discarded.

trunc_long Truncates a 32 bit floating point to a long integer
long trunc_long(float arg)

This function converts a floating point value to a LONG integer. Values out of the integer range for a long will
be converted to either zero or the max LONG value.

to_word Extends a smaller size to a word
word to_word(byte arg)

Extends the argument to a word size by placing zeros in the more significant bytes.

to_long Extends an (argument) to long size
long to_long(byte arg)
long to_long(word arg)

Extends the argument to a long size by placing zeros in the more significant bytes.

to_float Converts a Long integer to a 32 bit floating point format
float to_float(long arg)

This function returns the floating point equivalent of the LONG integer value, arg.
Conversion Function Examples:

; determine the most significant Hex digit of a word

FUNCTION none main
 LOCAL word in_val 10000
 LOCAL byte char_val
BEGIN
 =(char_val, trunc_byte(/(in_val, 4096)))
 IF >(char_val, 9)
 =(char_val, +(char_val, '0'))
 ELSE
 =(char_val, +(char_val, -('A', 10b)))
 ENDIF

 con_out_char(char_val)
ENDFUN

5.5 Mathematical Functions (Integer Functions)
The mathematical functions are used to perform arithmetic in FBASIC. The mathematics functions can be viewed as a
"prefix" notation for expressions. In expressions where order is significant, like subtraction and division, The first
argument is the value that is operated on, while the second argument is the value of the operation. In division then, the
first argument is the numerator and the second argument is the denominator and the value returned is the quotient.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 89

+ Arithmetic Sum (Integer)
byte +(byte arg1, byte arg2)
word +(word arg1, word arg2)
word +(byte arg1, word arg2)
word +(word arg1, byte arg2)
long +(long arg1, long arg2)
long +(long arg1, word arg2)
long +(long arg1, byte arg2)
long +(word arg1, long arg2)
long +(byte arg1, long arg2)

Multi-precision addition function. Two arguments are added together. The result is returned as the value of the
function.

+ Arithmetic Sum - 32bit floating point
float +(float arg1, float arg2)

This function returns the sum of two floating point arguments. To add scalar values, the scalar must first be
converted to a floating point value using the "to_float" function.

++ Increment by One
byte ++(byte arg)
word ++(word arg)
long ++(long arg)

Multi-precision increment single argument. The return value of the function is one plus the argument value.

- Arithmetic Difference (Integer)
byte -(byte arg1, byte arg2)
word -(word arg1, word arg2)
word -(byte arg1, word arg2)
word -(word arg1, byte arg2)
long -(long arg1, long arg2)
long -(long arg1, word arg2)
long -(long arg1, byte arg2)
long -(word arg1, long arg2)
long -(byte arg1, long arg2)

Multi-precision subtraction function. The result of arg1 less arg2 is returned as the value of the function.

- Arithmetic Inverse (Integer change sign)
long -(long arg)

Change sign function. The complement of arg is returned as the value of the function.

- Arithmetic Difference - 32 bit Floating Point Aguments
float -(float arg1, float arg2)

This function returns the difference of two floating point arguments. The return value of this function is the
value of arg1 less the value of arg2.

- Arithmetic Inverse (Floating point change sign)
float -(float arg)

Change sign function. The complement of arg is returned as the value of the function.

-- Decrement by One
byte --(byte arg)
word --(word arg)
long --(long arg)

Multi-precision decrement single argument. The return value of the function is the argument value less one.

5 Standard Library FBasic TICkit

90 Protean Logic Inc.

* Arithmetic Product (Integer)
byte *(byte arg1, byte arg2)
word *(word arg1, word arg2)
word *(byte arg1, word arg2)
word *(word arg1, byte arg2)
long *(long arg1, long arg2)
long *(long arg1, word arg2)
long *(long arg1, byte arg2)
long *(word arg1, long arg2)
long *(byte arg1, long arg2)

Multi-precision multiplication function. The result of arg1 multiplied by arg2 is returned as the value of the
function.

* Arithmetic Product - 32 bit Floating Point Product
float *(float arg1, float arg2)

This function returns the product of two floating point values. To multiply by a scaler, the scaler must first be
converted to a floating point value using the "to_float" function.

/ Arithmetic Division (Integer)
byte /(byte arg1, byte arg2)
word /(word arg1, word arg2)
word /(byte arg1, word arg2)
word /(word arg1, byte arg2)
long /(long arg1, long arg2)
long /(long arg1, word arg2)
long /(long arg1, byte arg2)
long /(word arg1, long arg2)
long /(byte arg1, long arg2)

Multi-precision division function. The result of arg1 divided by arg2 is returned as the value of the function.

/ Arithmetic Division - 32 bit Floating Point Division
float /(float arg1, float arg2)

This function returns the quotient of two floating point values. Argument arg1 is divided by argument arg2.

% Arithmetic Modulus or Remainder (Integer)
byte %(byte arg1, byte arg2)
word %(word arg1, word arg2)
byte %(byte arg1, word arg2)
word %(word arg1, byte arg2)
long %(long arg1, long arg2)
long %(long arg1, word arg2)
long %(long arg1, byte arg2)
word %(word arg1, long arg2)
byte %(byte arg1, long arg2)

Multi-precision remainder function. The remainder of arg1 divided by arg2 is returned as the value of the
function. For 32 bit functions, the sign follows that of arg1.

exp2 Return value of 2 raised the argument (63, 74 only)
byte exp2_byte(byte argument)
word exp2_word(byte argument)
long exp2_long(byte argument)

This function returns an integer of the size specified which is 2 raised to the power of the argument. This
function is useful for mathematical approximations or for bit specific generation.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 91

log2 Return integer logarithym, base 2, for the argument (63, 74 only)
byte log2(byte argument)
byte log2(word argument)
byte log2(long argument)

This function returns an integer which is the whole part of the log base 2 of the argument. This value is useful
for power functions or for root calculations. For example, log2(12345) will return 13. Below is a samle square
root function using log2:

FUNC long sqr
 PARAM long argument
 LOCAL long low_guess
 LOCAL long high_guess
 LOCAL long targ_guess
 LOCAL byte pwr
BEGIN
 =(pwr, log2(argument)) ; what is the log2 of the argument
 =(pwr, /(pwr,2b)) ; square root will be between

 ; 2**pwr and 2**(pwr+1)

 =(low_guess, exp2_long(pwr))
 ++(pwr)
 =(high_guess, exp2_long(pwr))
 =(exit_value, /(+(low_guess, high_guess), 2b)) ; average guesses
 =(targ_guess, *(exit_value, exit_value))

 WHILE <>(targ_guess, argument)
 IF >(targ_guess, argument)
 =(high_guess, exit_value)
 =(exit_value, /(+(low_guess, high_guess), 2b))
 IF ==(exit_value, high_guess)
 EXIT
 ENDIF
 ELSE
 =(low_guess, exit_value)
 =(exit_value, /(+(low_guess, high_guess), 2b))
 IF ==(exit_value, low_guess)
 EXIT
 ENDIF
 ENDIF

 =(targ_guess, *(exit_value, exit_value))
 LOOP
ENDFUN

math_overflow Test for a floating point math overflow
byte math_overflow()

Returns true if a floating point math overflow has occured.

math_underflow Test for a floating point math underflow
byte math_underflow()

Returns true if a floating point math underflow has occured. This is the case when the exponent for a function
was too negative to be represented in the 32bit format.

math_divzero Test for a floating point math divide by zero error
byte math_div0()

Returns true if a floating point divide produced a divide by zero error.

math_anyerror Test for any floating point math error
byte math_anyerror()

Returns true if any math floating point error has occured.

5 Standard Library FBasic TICkit

92 Protean Logic Inc.

math_errclear Clear all floating point math errors.
none math_errclear()

Clears all error flags for floating point math. Use before math operation where error testing will be done after
the operation.

Mathematics Function Examples:

; program to count the numbers from 100 to 2000 by 10
FUNCTION none main
 LOCAL word cnt_val
BEGIN
 rs_param_set(debug_pin) ; setup console to use

; the same connection as
; the debugger

 =(cnt_val, 100) ; set count value to 100
 REP
 con_out(cnt_val)
 =(cnt_val, +(cnt_val, 10))
 UNTIL >(cnt_val, 2000)
ENDFUN

5.6 BIT MANIPULATION FUNCTIONS
The bit manipulation functions work on byte values only. Each bit of the arguments have the function performed on them.
For example, an "AND" function is really 8 AND functions where the result of each of the AND operations is placed in
the 8 bits of the return value of the function. These functions are usually used for masking out specific bits for test or
combination from bytes and words. Logical functions are typically used as conjunctions for comparative functions
(==,>,<). Logical functions are only available for byte types.

b_and 8 and 16 bit Bitwise logical and function
byte b_and(byte arg1, byte arg2)
word b_and(word arg1, word arg2)

The result is the bit by bit AND of arguments one and two. The 8 bit version of this function can also be used as
a logical AND but the and() function is recommended for logical conjunction.

b_or 8 or 16 bit Bitwise logical OR function
byte b_or(byte arg1, byte arg2)
word b_or(word arg1, word arg2)

The result is the bit by bit OR of arguments one and two.

b_xor 8 or 16 bit Bitwise logical exclusive or function
byte b_xor(byte arg1, byte arg2)
word b_xor(word arg1, word arg2)

The result is the bit by bit EXCLUSIVE-OR of arguments one and two.

b_not 8 or 16 bit Bitwise logical complement function
byte b_not(byte arg)
word b_not(word arg)

The result if the bit by bit NOT of the argument. Therefor, all bits that are 1 in the argument are returned as 0
and vice versa.

b_set Set bits in an 8 or 16 bit field by mask
none b_set(byte field, byte mask)
none b_set(word field, word mask)

Bits are set in the field argument on the basis of which bits are set in the mask. Any bits which are set in the
mask will be set in the field argument. Bits in the mask which are zero, will leave the cooresponing bits in the
field argument unchanged. These functions are useful for conserving space by using bits as boolean flags.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 93

b_clear Clear bits in an 8 or 16 bit field by mask
none b_clear(byte field, byte mask)
none b_clear(word field, word mask)

Bits are cleared in the field argument on the bsis of which bits are set in the mask. Any bits which are set in the
mask will be set in the field argument. Bits in the mask which are zero, will leave the cooresponding bits in the
field argument unchanged.

b_test Tests bits in an 8 or 16 bit field by mask
byte b_test(byte field, byte mask)
byte b_test(word field, word mask)

This function tests specific bits in a field. If any of the bits specified by the mask are set in the field 0xffb is
returned. If all the specified bits are zero, the function returns 0b. This is a convenient way to test bits used as
boolean flags.

>> 8 and 16 bit arithmetic shift argument to the right
byte >>(byte arg)
word >>(word arg)

All bits of the argument are shifted toward bit 0. The least significant bit is discarded as a result and zero is
placed in msb.

<< 8 and 16 bit arithmetic shift argument to the left
byte <<(byte arg)
word <<(word arg)

All bits of the argument are shifted toward the msb. The most significant bit is therefore, discarded. 0 is placed
in the LSB.

get_low_nibble Get the low nibble in a byte
byte get_low_nibble(byte packed_byte)

Returns the low nibble within a packed byte.

get_high_nibble Get the high nibble in a byte
byte get_high_nibble(byte packed_byte)

Returns the high nibble within a packed byte.

set_low_nibble Set the low nibble in a byte
none set_low_nibble(byte packed_byte, byte nibble)

Places the 4 bit value 'nibble', into the packed_byte. The argument nibble masks out the bits 4 thru 7 to ensure
only the nibble is placed in the packed byte.

set_high_nibble Set the high nibble in a byte
none set_high_nibble(byte packed_byte, byte nibble)

Places the 4 bit value 'nibble', into the packed_byte. The argument nibble masks out the bits 4 thru 7 to ensure
only the nibble is placed in the packed byte.

5 Standard Library FBasic TICkit

94 Protean Logic Inc.

Bitwise Function Examples:

; Routine to read data from a ADC0831 A/D chip

FUNCTION byte ad_read ; 'Returns a byte'
 LOCAL byte count 0b ; a Byte counter
BEGIN
 pin_low(clk) ; make pin an output,
 ; needed when sharing buss
 pin_low(cs) ; enable chip
 pulse_out_high(clk,10w) ; toggle clk to get start bit
 REPEAT
 pulse_out_high(clk,10w) ; toggle clk to get bits
 =(exit_value,<<(exit_value)) ; shift bits
 =(exit_value, ~
 ~b_or(exit_value, ~
 ~b_and(pin_in(data),1b)))
 ; mask bit and add to data
 ++(count)
 UNTIL ==(count,8b)

 pin_low(data) ; return bus data line to output
 pin_high(cs) ; disable chip
ENDFUN

5.7 LOGICAL and RELATIONAL TEST FUNCTIONS
Logical relational functions are used in conditional flow control expressions, like IF or WHILE. Relational functions
return 255 (0xff) if the two arguments meet the relational condition, or 0 if they do not. The bitwise combination logic
functions, "and", "or", "not", and "xor" can be used with these functions provided all true values in the expression have
all bits set (0xff).

== Multi-precision relational test for equal
byte ==(byte arg1, byte arg2)
byte ==(byte arg1, word arg2)
byte ==(byte arg1, long arg2)
byte ==(word arg1, byte arg2)
byte ==(word arg1, word arg2)
byte ==(word arg1, long arg2)
byte ==(long arg1, byte arg2)
byte ==(long arg1, word arg2)
byte ==(long arg1, long arg2)
byte ==(float arg1, float arg2)

If the result of arg1 less arg2 is equal to zero, 0xff is returned. Otherwise, a 0 is returned as the value of the test.

>= Multi-precision rel. test for greater than or equal
byte >=(byte arg1, byte arg2)
byte >=(byte arg1, word arg2)
byte >=(byte arg1, long arg2)
byte >=(word arg1, byte arg2)
byte >=(word arg1, word arg2)
byte >=(word arg1, long arg2)
byte >=(long arg1, byte arg2)
byte >=(long arg1, word arg2)
byte >=(long arg1, long arg2)
byte >=(float arg1, float arg2)

If the result of arg1 less arg2 is greater than or equal to zero, 0xff is returned. Otherwise, a 0 is returned as the
value of the test.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 95

<= Multi-precision relational test for less than or equal
byte <=(byte arg1, byte arg2)
byte <=(byte arg1, word arg2)
byte <=(byte arg1, long arg2)
byte <=(word arg1, byte arg2)
byte <=(word arg1, word arg2)
byte <=(word arg1, long arg2)
byte <=(long arg1, byte arg2)
byte <=(long arg1, word arg2)
byte <=(long arg1, long arg2)
byte <=(float arg1, float arg2)

If the result of arg1 less arg2 is less than or equal to zero, 0xff is returned. Otherwise, a 0 is returned as the value
of the test.

> Multi-precision relational test for greater than
byte >(byte arg1, byte arg2)
byte >(byte arg1, word arg2)
byte >(byte arg1, long arg2)
byte >(word arg1, byte arg2)
byte >(word arg1, word arg2)
byte >(word arg1, long arg2)
byte >(long arg1, byte arg2)
byte >(long arg1, word arg2)
byte >(long arg1, long arg2)
byte >(float arg1, float arg2)

If the result of arg1 less arg2 is greater than zero, 0xff is returned. Otherwise, a 0 is returned as the value of the
test.

< Multi-precision relational test for less than
byte <(byte arg1, byte arg2)
byte <(byte arg1, word arg2)
byte <(byte arg1, long arg2)
byte <(word arg1, byte arg2)
byte <(word arg1, word arg2)
byte <(word arg1, long arg2)
byte <(long arg1, byte arg2)
byte <(long arg1, word arg2)
byte <(long arg1, long arg2)
byte <(float arg1, float arg2)

If the result of arg1 less arg2 is less than zero, 0xff is returned. Otherwise, a 0 is returned as the value of the test.

<> Multi-precision relational test for not equal
byte <>(byte arg1, byte arg2)
byte <>(byte arg1, word arg2)
byte <>(byte arg1, long arg2)
byte <>(word arg1, byte arg2)
byte <>(word arg1, word arg2)
byte <>(word arg1, long arg2)
byte <>(long arg1, byte arg2)
byte <>(long arg1, word arg2)
byte <>(long arg1, long arg2)
byte <>(float arg1, float arg2)

If the result of arg1 less arg2 is not equal to zero, 0xff is returned. Otherwise, a 0 is returned as the value of the
test.

and Perform logical AND conjunction on two bytes
byte and(byte arg1, byte arg2)

This function returns 0xffb only if both arguments are logically true. In other words, this function returns 0b if
either of the arguments is 0b. Use this function when combining relational tests in logical expressions.

5 Standard Library FBasic TICkit

96 Protean Logic Inc.

or Perform logical OR conjunction on two bytes
byte or(byte arg1, byte arg2)

This function returns 0xffb if either of the two arguments is logically true. In other words, this function returns
0b only when both of the arguments is 0b. Use this function when combining relational tests in logical
expressions.

not Perform logical NOT on a byte
byte not(byte arg)

This function returns 0xffb only if the argument is zero. In other words, this function returns 0b if the argument
is any value other than 0b.

eval Convert value to a logical byte. If arg is zero, returns 0 if not returns 255
byte eval(byte argument)
byte eval(word argument)
byte eval(long argument)

This function is used to determine if a numeric value is zero or not. Often, the value of zero in control programs
signals the end of a repetition or the end of a data stream. This function can speed up exit condition testing by
evaluating a piece of data relative to zero.

Examples:

FUNCTION none main
 LOCAL byte in_temp
 LOCAL word each_reading 2000
BEGIN
 WHILE eval(each_reading)
 =(in_temp, ad_read())
 IF or(<(in_temp,35), >(in_temp, 112))
 alarm(in_temp)
 ELSE
 do_other_stuff(in_temp)
 ENDIF

 --(each_reading)
 UNTIL
ENDFUN

5.8 INPUT and OUTPUT FUNCTIONS
The input and output functions represent the TICkits interface to the real world. All of these functions are implemented as
high speed internal PIC routines. Most of these routines refer to a pin_number argument. The pin number is a byte that
ranges between 0 and 15. The pin numbers 0 through 7 correspond to the pins labeled D0 through D7 on the TICkit. The
pin numbers 8 through 13 correspond to the pins labeled A0 through A5 on the TICkit. Pin number 14 is labeled R/W
and pin number 15 is labeled DL on the TICkit. Just as this implies, the I/O pins on the TICkit can often serve different
roles in different programs. Pins may serve as data or address bus pins, general I/O pins, or a serial connections.

pin_high Make pin a high logic output
none pin_high(byte pin_number)

Make the specified pin an output and set it to a high voltage level. The pins are numbered 0 through 15 where 0
is the data port's pin 0 and 15 is the address port's pin 7.

pin_low Make pin a low logic output
none pin_low(byte pin_number)

Make specified pin an output and set it to a low voltage level. The pins are numbered 0 through 15 where 0 is
the data port's pin 0 and 15 is the address port's pin 7.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 97

pin_off Make pin a Hi-Z output (turn off all output transistors)
none pin_off(byte pin_number)

This function turns off all output transistors for the specified pin. This has the effect of making the pin a Hi-Z
output. This is functionally equivelent to making the pin an input, except that the value of the pin is not read.
The level of the pin can be determined later using the pin_test() function, if desired.

pin_in Make pin an input and return logic level
byte pin_in(byte pin_number)

Make the pin and input, by turning off all output transistors, the return a logical value representing the logical
voltage level of the specified pin. A true value is returned if the pin has a logical high value input to it. The pins
are numbered 0 through 15 where 0 is the data port's pin 0 and 15 is the address port's pin 7.

pin_test Return the logic level of a pin
byte pin_test(byte pin_number)

Returns the logic level of the specified pin. A value of 255 is returned if the pin is high (approx 2.6 to 5.0 volts),
and a value of 0 is returned if the pin is low (approx 2.4 to 0.0 volts). NOTE: This function does not change the
output/input configuration of the pin, it only reads the voltage level on the pin.

aport_get Get byte representing pin levels of address port
byte aport_get()

Read all 8 pins from the address port into a byte.

dport_get Get byte representing pin levels of data port
byte dport_get()

Read all 8 pins from the data port into a byte.

spport_get Get byte representing pin levels of special purpose port
byte spport_get()

Read all 8 pins of the special purpose port into a byte. On the TICkit 63 or 62, the spport is identical to the
aport.

vport_get Get byte representing pin levels of the voltage measure port (A toD)
byte vport_get()

Read all 6 pins of the voltage measurement port (Analog to Digital) into a byte. On the TICkit 63 or 62 this port
also contains the signals used internally for EEprom interface and IRQ input. On the 63 and 74 this port also
contains the pin used for TMR0 input and EEprom power. If the EEprom power pin is turned off or brought
low, the TICkit device will reset.

aport_set Set pin levels of address port
none aport_set(byte pins_values)

Sets all 8 pins in the address port to the levels specified by pins_values.

dport_set Set pin levels of data port
none dport_set(byte pins_values)

Sets all 8 pins in the data port to the levels specified by the pins_values.

spport_set Set pin levels of special purpose port
none spport_set(byte pins_values)

Sets all 8 pins in the special purpose port to the levels specified by the pins_values. On the TICkit 63 or 62, the
spport is identical to the aport.

5 Standard Library FBasic TICkit

98 Protean Logic Inc.

vport_set Set pin levels of the voltage measure port (A toD)
none vport_set(byte pins_values)

Sets all 6 pins in the voltage measurement port (Analog to Digital) to the levels specified by the pins_values. On
the TICkit 63 or 62 this port also contains the signals used internally for EEprom interface and IRQ input. On
the 63 and 74 this port also contains the pin used for TMR0 input and EEprom power. If the EEprom power pin
is turned off or brought low, the TICkit device will reset.

atris_get Get status of address pin tristate levels
byte atris_get()

Returns all 8 bits from the address direction register. A zero in a bit indicates that the corresponding pin is an
output.

dtris_get Get status of data pin tristate levels
byte dtris_get()

Returns all 8 bits from the data direction register. A zero in a bit indicates that the corresponding pin is an
output.

sptris_get Get status of special purpose port tristate levels
byte sptris_get()

Returns all 8 bits from the special purpose directions register. A zero in a bit indicates that the corresponding pin
is an output. On the TICkit 63 or 62, the spport is identical to the aport.

vtris_get Get status of the voltage measure port (A toD) tristate levels
byte vtris_get()

Returns all 6 bits from the voltage measurement (Analog to Digital) direction register. A zero in a bit indicates
that the corresponding pin is an output. On the TICkit 63 or 62 this port also contains the signals used internally
for EEprom interface and IRQ input. On the 63 and 74 this port also contains the pin used for TMR0 input and
EEprom power. If the EEprom power pin is turned off or brought low, the TICkit device will reset.

atris_set Set tristate levels for address pins
none atris_set(byte dir_values)

Sets all 8 bits of the address direction register according to dir_values. A zero in a bit indicates the
corresponding pin is to be an output.

dtris_set Set tristate levels for data pins
none dtris_set(byte dir_values)

Sets all 8 pins of the data direction register according to dir_values. A zero in a bit indicates the corresponding
pin is to be an output.

sptris_set Set tristate levels for special purpose port
none sptris_set(byte dir_values)

Sets all 8 pins of the special purpose direction register according to dir_values. On the TICkit 63 or 62, the
spport is identical to the aport.

vtris_set Set tristate levels for the voltage measure port (A toD)
none vtris_set(byte dir_values)

Sets all 6 pins of the voltage measurement (Analog to Digital) direction register according to dir_values. On the
TICkit 63 or 62 this port also contains the signals used internally for EEprom interface and IRQ input. On the 63
and 74 this port also contains the pin used for TMR0 input and EEprom power. If the EEprom power pin is
turned off or brought low, the TICkit device will reset.

pulse_in_low Measure duration of a low pulse
word pulse_in_low(byte pin_number)

Measures the duration of a low pulse on the specified pin. A zero is returned if either no pulse is detected or if
the pulse is greater than .65535 seconds in duration. Each count is 10 microseconds.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 99

pulse_in_high Measure duration of a high pulse
word pulse_in_high(byte pin_number)

Measures the duration of a high pulse on the specified pin. A zero is returned if either no pulse is detected or if
the pulse is greater than .65535 seconds in duration. Each count is 10 microseconds.

pulse_out_low Generate a low pulse on a pin
none pulse_out_low(byte pin, word dur)

Generates a low pulse of the specified duration on the specified pin.
Each count produces a 10 microsecond duration.
NOTE: Pin must be made an output before executing this function.

pulse_out_high Genereate a high pulse on a pin
none pulse_out_high(byte pin, word dur)

Generates a high pulse of the specified duration on the specified pin.
Each count produces a 10 microsecond duration.
NOTE: Pin must be made an output before executing this function.

time_to_low Makes pin an input and Measures time to low input
word time_to_low(byte pin_number)

Makes the specified pin an input then measures the amount of time that elapses until the specified pin reads a
low input. This function is useful for measuring the discharge or charge rate of a capacitor, or for other delayed
input events like distance ranging with ultrasonics.

time_to_high Makes pin an input and Measures time to low input
word time_to_high(byte pin_number)

Makes the specified pin an input then measures the amount of time that elapses until the specified pin reads a
high input. This function is useful for measuring the discharge or charge rate of a capacitor, or for other delayed
input events like distance ranging with ultrasonics.

cycles Generate square wave cycles on a pin (NOT RTC compatible)
none cycles(byte pin, word cycles,~
 ~word high_time, word cycle_time)

Generates the specified number of square wave cycles on the specified pin, with the specified high and cycle
periods. All times are specified in approx. 3 us intervals. By keeping the high time one half of the cycle time, a
50% duty cycle square wave can be generated. By varying the duty cycle of the wave, the cycles function can be
used as analog to digital conversion by connecting a capacitor between the output pin and ground. Up to a 16 bit
resolution can be supported using this method. Use a constant as the fixed wave length of the conversion. The
voltage out will correspond to the ratio of the high_time divided by the cycle_time multiplied by the high
voltage. Frequencies as low as 2.5 cycles per second and as high as 60K cycles per second can be generated
using this function.
NOTE: Pin must be made an output before executing this function.
NOTE: This funciton is not integrated with the RTC background time keeping. Therefore, and cycles function
which operates for more than 4ms will cause the RTC to loose timing ticks.

5 Standard Library FBasic TICkit

100 Protean Logic Inc.

ppm Pulse Period Modulation output.
none ppm(byte output_pin, byte duty, word duration)

This function generates a pulse train that is varied in the purportion of high time to low time. This pulse train,
when filtered produces a DC offset which is purportional to the ratio of high time to low time. Therefore, this
function can be used as a digital to analog output function. The signal is output the output_pin and produces a
DC offset given by the following formula offset= 5volts * duty/256. The signal is generated for the time it takes
to generate the number of pulses spedified by cycles. This function varies its frequency by as much as a factor of
128 (1 or 255 have the lowest frequency, while 128 is the fastest). Depending upon what the ppm funciton is
driving and the previous output duty, the cycles required to acheive the proper steady state power level can vary
greatly. The PPM method allows the DC offset to converge upon the desired modulation target much faster than
that of simpe PWM (pulse width modulation). The table below illustrates the timing considerations for the PPM
function as well as the differences between the PPM function in a 4MHz device versus a 20MHz device. Each
duration granule is 25 us

Min. Frequency (1 or 255) Max. Frequency (128) Background RTC

4 MHz device (X) 156.25 Hz 20,000.0 Hz Loses time every 4ms

20 MHz device (H,F) 156.25 Hz 20,000.0 Hz No lost time counts

square_out output a symetrical square wave
none square_out (byte output_pin, byte frequency, word duration)

This function generates a symetrical square wave on the specified pin. The duration of output is determined by
the duration parameter in 25 us granules. The frequency is determined by the frequency parameter where 0 is a
frequency of 78.125 Hz and 255 is a fequency of 20,000 Hz. This funciton is integrated with the RTC
background timing functions so no time is lost on 20MHz devices. 4MHz devices may loose time.

rc_measure Measure the resistance/capacitance at a pin
word rc_measure(byte pin)

Measures the discharge time of a resistance and capacitance circuit. This function can be used to determine
either the resistance or the capacitance in such a circuit. The resistance and capacitance should be wired in
parallel between the I/O pin specified and ground. A zero will be returned if either the discharge time is too low,
or the charge/discharge time is too high. Appendix A describes this circuit in greater detail.

Examples:

; resistance to voltage converter

FUNCTION none main
 LOCAL word res_val
BEGIN
 pin_low(9b) ; discharge cap
 REP
 =(res_val, -(rc_measure(9b), 1000)
 ; RC circuit at pin 9
 cycles(10b, 100, res_val, 39000)
 ; D/A circuit at pin 10
 ; assume full range value is 40000 and low value
 ; is 1000.
 LOOP
ENDFUN

5.9 EEprom Routines (Pointer Dereferencing)
The EEprom routines access information contained in the TICkit eeprom by using a 16 bit address. This is the same
memory that is used to contain the TICkit program. When an FBASIC program is compiled, the compiler calculates the
amount of space required by the procedure and all ALLOCATIONs. The first EEprom location that is not used by the
program is placed in a special vector at the beginning of the EEprom by the compiler. The two bytes contained at

FBasic TICkit 5 Standard Library

Protean Logic Inc. 101

locations 0x0004 and 0x0005 of the EEprom form a 16 bit word which is the address of the first available unused
EEprom space. This address and all addresses higher than it are available for a program to use. Much of this address
space may not be usable if no EEprom device has been installed for that area.

The standard 32K EEprom (24LC256) for the TICkit 63 has a total address space from 0x0000 to 0x7fff. The TICkit 63
can address up to 8 of the 32K devices for a total address space of 256K, however this space is organized as four banks
of 64K bytes each. Care must be excersized when using the ee_write functions with WORD or LONG sizes or
ee_read_word or ee_read_long, that a 64K device boundry is not crossed. The TICkit will not address the subsequent
device and unpredictable results or wrap around will occur. Take steps to ensure that all reads and writes are fully with
64K boundries.

TICkit 63 or 74 devices can also use EEproms which are smaller than the 32K standard size. The 24LC64 or 24LC128
may be used in place of the 24LC256. When this is done, the user must keep in mind that holes are created in the EEprom
address space. Each of the 8 possible EEprom devices begins its storage at 32K boundries. Therefore, when using smaller
EEproms with the 63 or 74, any 32K device area with a smaller capacity EEprom will have the remaining area "mirror"
the actual EEprom area creating the possibility for overwriting data or programs unintentionally.

8K EEprom configured TICkit (Standard in the TICkit 62) are initially shipped with only an 8K EEprom installed, but an
additional 7 devices may be installed which brings the address range up to a full 64K. The programmer will need to code
programs with the known upper limit of memory to prevent an unsuccessful read or write to an illegal address.

The ALLOCATE directive bypasses some of the complexity mentioned above. The ALLOCATE statement will reserve
EEprom space for data use. The address of any allocation or component field of an allocation is known in an expression
simply by referencing the full field and allocation name. The programmer must still exercise caution to ensure that
allocations do not exceed the physically implemented limit of the EEprom. The ALLOCATE directive allows INIT
usage, however, the current version of the FBasic compiler supports only the first 64K area of EEprom. If using a TICkit
63 or 74 with more than 64K, the user must manage allocation and initialization with the SEQUENCE directivd. The
SEQUENCE directive can be used in much the same way as the ALLOCATE directive to facilitate symbolic references
to data areas in the upper three EEprom banks but the compiler cannot initialize any storage declared with the
SEQUENCE directive.

EEprom capabilities of the TICkit 63 are not limited to 8bit reads and writes. The 63 or 74 can write 1, 2, or 4 bytes into
any location in any of the four 64K byte banks of EEprom. This yields a total address space of 256K bytes. The functions
below accomplish this interface.

EEprom capabilities of the TICkit 62 are limited to 8bit reads and writes. It can write 1, 2, or 4 bytes into any location in
within the 64K area of EEprom using the ee.lib library, however.

ee_read Read a byte at EEprom address (compatible with 62)
byte ee_read(word address)

Reads a byte from the EEprom at the specified address. Reads that are out of the valid address space (no eeprom
maps to that address) will cause unpredictable results that may result in premature program termination. The
programmer must therefore assure that the address is valid. EEprom address 4 and 5 contain the low and high
bytes of the address of the first available eeprom byte. All space from this point to the end of the EEprom
storage address space is available for program use. The ALLOCATE keyword can be used to allocate EEprom
data space in a structured way.

ee?_read_byte Reads a byte from one of the four EEprom banks.
byte ee0_read_byte(word address)
byte ee1_read_byte(word address)
byte ee2_read_byte(word address)
byte ee3_read_byte(word address)

Reads a byte from the EEprom Block specified at the address specified. ALLOCATE, SEQUENCE, RECORD,
and FIELD are all designed to aid with the allocation and pointer generation of EEprom data structures.

5 Standard Library FBasic TICkit

102 Protean Logic Inc.

ee?_read_word Reads a word from one of the four EEprom banks.
word ee0_read_word(word address)
word ee1_read_word(word address)
word ee2_read_word(word address)
word ee3_read_word(word address)

Reads a word from the EEprom Block specified at the address specified. ALLOCATE, SEQUENCE, RECORD,
and FIELD are all designed to aid with the allocation and pointer generation of EEprom data structures.

ee?_read_long Reads a long from one of the four EEprom banks.
long ee0_read_long(word address)
long ee1_read_long(word address)
long ee2_read_long(word address)
long ee3_read_long(word address)

Reads a long from the EEprom Block specified at the address specified. ALLOCATE, SEQUENCE, RECORD,
and FIELD are all designed to aid with the allocation and pointer generation of EEprom data structures.

ee_read_word Read a word at EEprom address (TICkit 62)
word ee_read_word(word address) ; ee.lib required

Reads a word from the EEprom at the specified address. Reads that are out of the valid address space (no
eeprom maps to that address) will cause unpredictable results that may result in premature program termination.

ee_read_long Read a long at EEprom address (TICkit 62)
long ee_read_long(word address) ; ee.lib required

Reads a long from the EEprom at the specified address. Reads that are out of the valid address space (no eeprom
maps to that address) will cause unpredictable results that may result in premature program termination.-

ee_write Write a byte to EEprom address (Compatible with TICkit 62)
none ee_write(word address, byte data)
none ee_write(word address, word data) ; ee.lib required
none ee_write(word address, long data) ; ee.lib required

Writes the contents of the argument data to the EEprom at the specified address. See ee_read for more details.

ee?_write Writes a value of the parameter size to one of the four EEprom banks
ee0_write(word address, byte data)
ee1_write(word address, byte data)
ee2_write(word address, byte data)
ee3_write(word address, byte data)
ee0_write(word address, word data)
ee1_write(word address, word data)
ee2_write(word address, word data)
ee3_write(word address, word data)
ee0_write(word address, long data)
ee1_write(word address, long data)
ee2_write(word address, long data)
ee3_write(word address, long data)

Writes the contents of the argument to the address of the EEprom Bank specified. See ee?_read_???? for more
details.

ee_array_byte Calculate Address of a byte array element (used internally)
word array_byte(word offset, word index)

This function returns a word value which is the address of an element of an array which starts at "offset" and
which is the "index" numbered element. Note: Use compiler generated pointer math when possible.

ee_array_word Calculate Address of a word array element (used internally)
word array_word(word offset, word index)

This function returns a word value which is the address of an element of an array which starts at "offset" and
which is the "index" numbered element. Note: Use compiler generated pointer math when possible.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 103

ee_array_long Calculate Address of a long array element (used internally)
word array_long(word offset, word index)

This function returns a word value which is the address of an element of an array which starts at "offset" and
which is the "index" numbered element. Note: Use compiler generated pointer math when possible.

ee_array_size Calculate Address of an array element (used internally)
word array_size(word offset, word size, word index)

This function returns a word value which is the address of an element of an array which starts at "offset" and
which is the "index" numbered element. All elements in the array are assumed to be of "size" number of bytes.
Note: Use compiler generated pointer math when possible.

EEprom Examples:

; use record and allocate to record purchases

;The ee.lib reference is only required for the TICkit 62)
;LIB ee.lib ; library for ee_write_word

RECORD each_buy
 FIELD word cust_no
 FIELD word quantity
 FIELD word prod_no
ENDREC

ALLOC word last_purchs
ALLOC each_buy purchs 100 ; make space for 100 purchases

GLOBAL cur_purchs 0

FUNCTION none main ; list purchases
 LOCAL word temp_purchs
 LOCAL word purch_count 0
BEGIN
 ee_read_word(cur_purchs, last_purchs) ; read last rec
 =(temp_purchs, purchs) ; points to first record
 WHILE <(temp_purchs, cur_purchs)
 ++(purch_count)
 con_out(purch_count)
 con_out_char(' ')
 con_out(ee_read_word(~

~ +(temp_purchs, cust_no@each_buy)))
 ; display customer number
 con_out_char(' ')
 con_out(ee_read_word(~
 ~ +(temp_purchs, quantity@each_buy)))

; display quantity
 con_out_char(' ')
 con_out(ee_read_word(~
 ~ +(temp_purchs, prod_no@each_buy)))
 ; display product number
 con_out_char('\r')
 con_out_char('\l')

 =(temp_purchs, +(temp_purchs, each_buy))
 LOOP
ENDFUN

5.10 IIC PERIPHERAL FUNCTIONS
Starting with version 2.0 of the TICkit interpreter, Generic I2C bus operations are supported for limited peripheral
connections using the existing clock and data lines. These lines, which connect to the EEprom and also be used to
connect to I2C peripherals with compatible command protocols. Such a device is the Protean X-Tender device. When

5 Standard Library FBasic TICkit

104 Protean Logic Inc.

placing additional peripherals on the I2C bus wires, care must be used to ensure the electrical requirements of the 400k
bit per second connection are conformed to. This may require 10k ohm terminations on the physical ends of the lines,
special routing of the lines, and special logical address selection of the devices sharing the line. All devices must conform
to the three byte or four byte protocol specifications:

1. Address Byte: bit0=R/W, upper seven bits must be a unique device address
2. Command Byte: This byte command the addressed device to do something
3. Data Byte(s): The byte(s) is either read or written on the basis of the Address byte bit0. This is usually a

parameter for a command, or the result of the previous command. If the function is a word function, the low byte
is sent first.

4. In Read operations, the above protocol is modified. If the R/W bit of the address byte is 0, the address and
command bytes will be sent but a re-start will be issued instead of any data transfere following the command
byte. If the R/W bit is set, the address and command bytes are skipped and only the following occurs.

5. The address byte is sent with the R/W bit set.
6. Data Byte(s): The single or double byte (TICkit 57 only for double byte) data is received by the TICkit. The

TICkit can be paused by the sending device holding the clock for the first data bit of transfer. The sending
device must not hold the TICkit for longer than the internal watchdog timer (approx 16ms) or a TICkit reset may
occur.

Three functions implement this protocol. The user must ensure that the address bit is set appropriately for reading or
writing. Additionaly, notice that the Address/command word used in all of the I2C functions is a passback parameter. If
there is an error communicating to an I2C device, the upper byte of the Address/command word is cleared. The
Interpreter will attempt to communicate with a device for approximately 16ms (or more if a prescaler is used with the
internal watch dog timer) before clearing the address byte and continuing past the I2C function.

i2c_write Write a command and data byte to bus (Byte only in TICkit 62)
none i2c_write(word addr_comm, byte data)
none i2c_write(word addr_comm, word data)

This function will write a byte to the addressed device. The address and command bytes are concatenated to
form the addr_comm byte. The exact address and command will vary from one peripheral device to another.
The address byte of addr_comm will be cleared if the function fails. The word data version of this function is
only available in the TICkit57

i2c_read Read a byte from an addressed device
byte i2c_read(word addr_comm)

This function will transmit an address and a command, then wait to read back a byte from the addressed device.
The exact protocol used in this function depends upon the level of the R/W bit of the device address. If the R/W
bit is low (write level) an address byte and command byte will be sent before the data read is performed. The
address byte of addr_comm will be cleared if the function fails.

i2c_read_word Read a word from an addressed device (TICkit 63 or 74 only)
word i2c_read_word(word addr_comm)

This function will transmit an address and a command, then wait to read back two bytes from the addressed
device. The exact protocol used in this function depends upon the level of the R/W bit of the device address. If
the R/W bit is low (write level) an address byte and command byte will be sent before the data read is
performed. The address byte of addr_comm will be cleared if the function fails.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 105

I2C I/O Example:

=(write_addrcomm, 0x80c2w)
i2c_write(write_addrcomm, 0x8b) ; select A/D channel 0

; on I2C Xtender periph.
IF <(write_addrcomm, 256w)
 call i2c_error() ; handle error with I2C
ELSE
 =(in_voltage, i2c_read(0x80c2w)) ; read voltage
ENDIF

5.11 Parallel BUS and LCD FUNCTIONS
The bus functions implement a limited traditional parallel microprocessor bus. This bus may have either 8 or 4 data lines
and may have up to 6 address lines for a total address space of 32 read and 32 write locations. Bus configurations with 4
lines can be made to write 8 bit values by sending two 4 bit values in succession. This works with LCD modules that
support 4 bit nibble modes. Before any bus transfer, the bus routines must be set up with a special control byte. The upper
two bits of this byte define the mode of the bus. Bit 7 determines if the data bus is 8 lines wide or 4 lines wide. Bit 6 has
meaning only for 4 bit buses and determines if 8 bit values are to be sent on the bus by automatically sending two nibbles
for every 8 bit value. The remaining bits of the control byte (bit 0 through bit 5) determine which of the address lines to
use for bus operations and which lines to leave as general purpose I/O. If the bus is 4 lines wide only pins D4 through D7
are used for bus operations. Any of these bits that are high indicate that the corresponding address pin should be used to
bus operations. Between bus operations, all selected address pins are set to a low level, effectively addressing location
0x00.

Data lines may be used for general purpose I/O between bus operations provided that the bus is set up again before the
next bus operation.

The lower three address lines (A0 thru A2) maintain their levels longer than the upper address (A3 thru A5) lines. This
prevents any race conditions that may exist between device selecting logic and the R/W, data lines, and the device select
lines. For this reason, The lower three lines should be used as register select lines while the upper address lines should be
used to select between devices on the bus. The meanings of the upper address lines combined with the fact that the
address of zero is used as the "deselect" means that locations 0x00 through 0x07 should not be used by any devices on
the bus. Map all address decoding to select device by requiring at least one of the upper address lines (A3 thru A5) to be
high.

Some common LCD functions are documented here. These functions are contained in the libraries mentioned in their
prototype. These functions assume the pressence of three defined symbols. Symbol lcd_bus_mask specifies which of the
address lines are to be used by bus functinos. Symbol lcd_data_reg specifies the bus address for the data register. Symbol
lcd_cont_reg specifies the bus address for the control register of the LCD module.

buss_setup Setup address and data pins for bus I/O
none buss_setup(byte mode_and_mask)

Sets up the external bus routines. the mode_and_mask specify what the data bus width will be, if 4 bit wide how
may nibbles to send, and which lines from the address port to dedicate to use as address lines. Bit 7 specifies the
width of the data bus. A high indicates that all eight lines of the data I/O port are dedicated to bus functions. A
low indicates that only bits 4 through 7 are dedicated to bus functions. Bit 6 is ignored for 8 bit operations but
indicates how many nibbles to send for each bus function if the data bus is 4 bit. A high in bit 6 causes all bus
functions to perform two 4 bit nibble transfers for every operation to transfer a complete 8 bit byte. If bit 6 is
low, only bits 4 through 7 of any bus read or write operation will be transferred. Bits 0 through 5 of
mode_and_mask are used to reserve I/O lines of the address port for bus address lines. If any of these bits are
high, the bits will be used to select devices on the bus during read and write operations. Any bits of
mode_and_mask that are low are unaffected in future bus read/write operations. All bus read or write operations
effect pin 6 of the address port. This line is used as the read/write line for the address bus. This line is normally a
high output after bus_setup but is brought low during bus write operations. Items on the address bus are selected
whenever their address is placed on the used address port lines. Whenever a bus operation is not taking place, all
used address lines are brought low. This effectively selects bus address zero. Therefore, no devices on the
address port can be mapped to address zero.

5 Standard Library FBasic TICkit

106 Protean Logic Inc.

buss_read Read a byte from bus address
byte buss_read(byte address)

Reads a byte from the external bus at the specified address. Read method will conform to the current bus setup.
Unused address or data I/O lines will not be affected by this function.

buss_write Write byte to bus address
none buss_write(byte addr, byte data)

Writes a byte to the external bus at the specified address. Writes conform to the current bus setup. No unused
address or data I/O lines are affected by this function.

lcd_init4 Initializes an LCD module for 4 bit data bus
none lcd_init4() ; lcdinit4.lib required

This function sets up the TICkit bus and sends the necessary commands to initialize a 44780 based LCD module
for 4 bit data transfer.

lcd_init8 Initializes an LCD module for 8 bit data bus
none lcd_init8() ; lcdinit8.lib required

This function sets up the TICkit bus and sends the necessary commands to initialize a 44780 based LCD module
for 8 bit data transfer.

lcd_cont_wr Writes a byte to LCD control register
none lcd_cont_wr(byte control) ; lcdsend.lib required

Use this function to write to the control register of a 44780 based LCD module. This function automatically
ensures previous command is complete.

lcd_data_wr Writes a byte to LCD data register
none lcd_data_wr(byte data_val) ; lcdsend.lib required

Use this function to write to the data register of a 44780 based LCD module. This function automatically ensures
previous command is complete. The data register is either character generator data or display data depending on
the last write to the control registers address control.

lcd_out_char Writes a byte to LCD data register
none lcd_out_char(byte data_val) ; lcdbyte.lib required

Use this function to write to the data register of a 44780 based LCD module. This function automatically ensures
previous command is complete. The data register is either character generator data or display data depending on
the last write to the control registers address control.

lcd_string Writes a string to the LCD
none lcd_string(word string_addr) ; lcdstrin.lib required

This function writes a string of bytes to the LCD from a location in EEprom. The string must be null terminated.
No control characters are acted upon.

lcd_out Writes a number to the LCD
none lcd_out(byte value) ; lcdbyte.lib required
none lcd_out(word value) ; lcdword.lib required
none lcd_out(long value) ; lcdlong.lib required

This function writes a number to the LCD screen. Three versions of this routine write either a byte, a word or a
long value to the LCD.

lcd_fmt Writes a formatted long to the LCD
none lcd_fmt(long value, word form) ; lcd_fmt.lib required

This function writes a formatted number to the LCD screen. The format is determined by a string contained in
EEprom (pointed to by argument form). Each character in the format string cooresponds to a digit. The character
meanings are as folllows:

$ Print a '$' character in the output
Print a number if this or a previous digit was non-zero

FBasic TICkit 5 Standard Library

Protean Logic Inc. 107

0 Print a number even zero, forces following #'s to print
X Do not print a number digit, but account for its position
. Print a decimal point

Bus I/O Examples:

; Check that LCD is ready to receive data and write
; assume LCD is already initialized

FUNCTION none lcd_write
 PARAMETER byte lcd_out
BEGIN
 WHILE >(bus_read(lcd_cont_reg), 0x80b)
 LOOP

 bus_write(lcd_data_reg, lcd_out)
ENDFUN

5.12 TIMING and COUNTING FUNCTIONS
The TICkit has no built in time keeping capability except for the microprocessor clock. However, by executing a known
number of PIC instructions, a delay of known duration can be caused. This delaying technique is used to produce the time
base for the following functions.

In addition to the delaying technique, the TICkit can take advantage of the PIC's internal RTCC (real time clock counter)
to count rising or falling edges on the RTCC input, or to count machine clock cycles. The mode of the RTCC is set by
using the "rtcc_" functions.

One additional capability of the PIC is used to generate longer delays and reduced power operation. Each PIC has a built
in watchdog timer. This timer is a crude internal RC circuit that will reset the PIC if the Capacitor is not recharged before
it is fully discharged. The watchdog timer is unavailable as a seperate user controlled resource, but is used by the
interpreter for trapping unexplained errors like I2C timeout or for use with the sleep functions. This method of timing is
relatively imprecise, but is still useful for creating a low power delay. The sleep function uses this method.

delay Delay processing for milliseconds
none delay(word millisecond)

Delays program execution for the specified number of milliseconds.

sleep Delay processing and conserve power for a time (not RTC compatible)
none sleep(byte sleep_periods)

Puts the processor to sleep for the specified amount of sleep periods. Each period is nominally 18ms. This
function, due to internal PIC organization, will modify the RTCC edge and source settings. NOTE: the time
base for this function is an internal RC discharge rate and is affected by temperature and environmental
conditions like the characteristics of the IC or supply voltage variations. The base delay of this function is
typically 18ms at 25 degrees C, but can vary between 9ms and 30ms. Note: it is possible to assign the RTCC
prescaler to the sleep timer using custom OPERATION directives not contained in the standard library. This
will dramatically increase the sleep interval. If you really want to do this, examine the token library and observe
how the rtcc_int_256 and rtcc_ext_rise operations are created. These operations simply set the PIC OPTION
register.

rtcc_get Get the current count of the RTCC register
byte rtcc_get()

Reads the 8 bit contents of the RTCC register.

rtcc_set Set the count of the RTCC register
none rtcc_set(byte count)

Sets 8 bit value, "count" into the RTCC register.

5 Standard Library FBasic TICkit

108 Protean Logic Inc.

rtcc_option_set Set the OPTION register of the processor (TICkits 63, 74)
none rtcc_option_set(byte option)

This function sets the internal OPTION register of the processor which controls the WDT assignment, the
TMR0 clock source, the weak pull-ups on the D port, and the interrupt detection on the Dport pins.

rtcc_option_get Get the OPTION register of the processor (TICkits 63, 74)
byte rtcc_option_get()

This function returns the contents of the processors OPTION register

rtcc_int RTCC source is internal clock
none rtcc_int()

Sets the source for the RTCC to be the internal clock. This is the oscillator frequency divided by 4. This clock is
inactive during sleeps.

rtcc_int_16 RTCC source internal and prescaled by 16
none rtcc_int_16()

Sets the source for the RTCC to be the internal clock. This is the oscillator frequency divided by 64. This clock
is inactive during sleeps.

rtcc_int_256 RTCC source internal and prescaled by 256
none rtcc_int_256()

Sets the source for the RTCC to be the internal clock. This is the oscillator frequency divided by 1024. This
clock is inactive during sleeps.

rtcc_ext_rise RTCC source is external clock
none rtcc_ext_rise()

Sets the source for the RTCC to be the external pin and clocks on the rising edge of any signal on this pin. This
pin should be tied high or low if not used.

rtcc_ext_fall RTCC source is external clock
none rtcc_int()

Sets the source for the RTCC to be the external pin and clocks on the falling edge of any signal on this pin. This
pin should be tied high or low if not used.

rtcc_count Count while delaying for milliseconds
byte rtcc_count(word milliseconds)

Clears the RTCC register then counts pulses in the RTCC while the TICkit delays for n milliseconds. The 8 bit
contents of the RTCC is returned after the delay. This function is useful for determining frequency of an AC
signal up to about 50kHz.

rtcc_wait Wait until RTCC count rolls over to zero
none rtcc_wait()

TICkit execution will pause until the RTCC register rolls over to a count of zero. This function can be used in
conjunction with RTCC_SET and RTCC_INT_256 to implement a real time clock. By setting the RTCC count
before a section of program is executed and then waiting for the RTCC count to roll over to zero following the
program segment, the programmer can ensure the segment will take the same amount of time to execute for each
time it is executed. This makes it possible to create real time loops.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 109

Timing Examples:

; determine the frequency of an input square wave
; using the RTCC

FUNCTION word freq_get
BEGIN
 rtcc_ext_rise() ; rising edge-external
 =(exit_value, rtcc_count(100))
 ; count pulses for 100ms
 ; measures between 0 and 2550 Hz signals to
 ; the nearest 10 Hz.
ENDFUN

5.13 RS232 and COMMUNICATIONS Emulation FUNCTIONS
The blank PIC processors used by the TICkit57 and TICkit62 do not have serial communications hardware built into
them so all RS232 serial functions are emulated with timing loops and bit I/O within the interpreter for these devices. The
blank PIC processors used by the TICkit 63 and 74 do have serial hardware but additional or more flexible serial
interfaces are implementened using emulated RS232 serial functions. Emulated RS232 serial routines reley upon loops of
PIC instructions to generate the timebase for the serial timing. This method produces accurate approximate timing for the
standard baud rates from 300 to 9600 baud with a 4 MHz TICkit and 300 to 19200 baud with a 20 MHz TICkit.

The emulated routines can send and receive either true or inverted serial bit levels through a general purpose I/O pin. The
I/O pin, logic levels, and baud rate are set within a parameter register byte. Bit 7 of this bytes indicate if the
communication is inverted (bit7=1) or if the communications are true (bit7=0). Bits 4 through 6 determine the baud rate
where 000=300 baud and 110=19200 baud. If bits 4 thru 6 are 111, then a user programmable baud rate is generated for
use with non-standard baud rates. Bits 0 through 3 determine which general purpose I/O pin to use where 0000 is pin D0,
1000 is pin A0, and 1111 is the DL pin (which is used for debugging purposes also).

The TICkit 63 and 74 have multiple rs_parameter bytes for different types of functions, as summarized below. This
allows for faster communications for different purposes through different I/O pins without having to reprogram the
parameters for each use. The rs_param_set and rs_param_get functions are retained for compatibility with the older
TICkits and simply set all four parameters with the same value.

rs_txparam The parameter used by transmitting functions
rs_rxparam The parameter used by receiving functions
rs_conparam The parameter used by the console in/out functions
rs_dbparam The parameter used by the debug connection (download and debugging)

The TICkit 63 and 74 emulated rs232 receive functions can also generate a handshaking signal. This signal indicates
when the TICkit is ready to receive serial data (the space level) and when it is not ready (the mark level). The handshake
signal uses the same logic levels as the data pin and is set with the parameter byte. So, for example, if data
communication is set up for inverted levels and the routine is ready to receive serial data, the handshake pin will output a
high logic level (Vdd). The handshake is controlled using a control byte. This byte can be sent as a parameter within a
specific call or set globally using the rs_control_set() function.

One additional parameter used by the emulated rs232 functions is set using the rs_stop_chek and rs_stop_ignore
functions. If set to ignore, the stop bit of any value received from the serial communication is not tested for framing
accuracy. This provides one additional bit of time for processing consecutive data received through the serial port, but
does not allow the detection of a framing errors or break levels.

Special care must be exercised when using the serial receiving routines. The routines must be executing when data is
transmitted from the sending device, otherwise the startbit will not be sensed and either no information or erroneous
information will be received. This introduces an unavoidable timing problem for bursts of more than one byte of
information to be received through the serial functions. Any processing of the byte just received must take place in one
half bit time (or 1.5 bit time if the stop bit is not sensed) to ensure that the next byte will be received intact. This
provides very little time for processing at high baud rates.

5 Standard Library FBasic TICkit

110 Protean Logic Inc.

The TICkit57 has only a single byte receive routine for RS232. The TICkit62 has a multi-byte buffer and can receive up
to 96 bytes of serial in a block (96 is a theoretical limit, in actual use, some of the TICkit memory will be used for
processing and stack. On the TICkit62, 64 bytes is probably the maximum buffer than can be used for serial blocks).

The TICkit62 assumes that a message format will be used frequently on the TICkit. This is accomidated by features in the
recblock function that wait for break levels or a specific address byte before actually capturing serial data. Also, the
TICkit 62 can generate handshaking signals for a normal serial stream. Whenever the buffer gets full, the handshake line
will change level and signal the transmitting device to pause while the the TICkit digests the buffer information.

The TICkit 63 and 74 provide the rs_scanf function which is a sophisticated version of rs_block which can receive or
match multiple fields of data within a serial stream. The 63 and 74 may use the scanf logic to simulate the function of the
rs_block of the earlier TICkit.

rs_param_set Set RS232 parameters
none rs_param_set(byte type_baud_pin)

Setup baud rate and pin number for serial RS232 communications. This function also sets the pin level
meanings. Bit 7 of type_baud_pin determines if the communications signal is inverted and open sourced, or if it
is true and totem pole. If bit 7 is high, the signal is inverted and the driver is open sourced when transmitting
which means the line must be pulled low. If bit 7 is low, the signal is true and the transmit driver is a totem pole
configuration. A totem pole configuration should not be "wire-ored" to prevent stressing the output electrically.
Bits 4 through 6 determine the baud rate of the communications routines. A value of 0 in these bits selects a 300
baud rate. A value of 14 selects a 19,200 baud rate. All baud rates in between follow the same doubling pattern.
Bits 0 through 3 determine the pin for communications where 0 is data line 0 and 15 is address line 7. The
standard console and debug parameter is a setting of 0xDF (Inverted, 9600 baud, pin 15-address line 7). A baud
value of 15 causes the user set divisors to be used for determining the baud rate. See rs_extrarate_set() function
for details on custom baud rates

rs_extrarate_set Set the divisors for a Custom Baud Rate
none rs_extrarate_set(word divisor)

Sets internal registers for a custom baud rate. This baud rate is only used when the rs_param register has
selected the baud rate of 15 or "rs_custom". The meaning of the divisor is as follows: For 20 MHz devices, the
formula for bit times is (16+6(x-1)) * 200ns where x is the divisor given as the argumentof rs_extrarate_set.
For 4 MHz devices, the formula for bit times is (16+6(x-1) * 1000ns where x is the divisor in the same way.

rs_txparam_set Set the serial parameter for transmit functions
none rs_txparam_set(byte serial_parameter)

Sets the serial parameter for transmit functions. Does not effect the serial parameter for receive functions,
console functions, or debug functions. The format of the serial parameter is the same as that for rs_param_set().

rs_rxparam_set Set the serial parameter for receive functions
none rs_rxparam_set(byte serial_parameter)

Sets the serial parameter for receive functions. Does not effect the serial parameter for transmit functions,
console functions, or debug functions. The format of the serial parameter is the same as that for rs_param_set().

rs_conparam_set Set the serial parameter for console functions
none rs_conparam_set(byte serial_parameter)

Sets the serial parameter for console functions. Does not effect the serial parameter for receive functions,
transmit functions, or debug functions. The format of the serial parameter is the same as that for rs_param_set().

rs_dbparam_set Set the serial parameter for debug functions
none rs_dbparam_set(byte serial_parameter)

Sets the serial parameter for debug functions. Does not effect the serial parameter for receive functions, console
functions, or transmit functions. The format of the serial parameter is the same as that for rs_param_set().

FBasic TICkit 5 Standard Library

Protean Logic Inc. 111

This function is very useful in the TICkit 63 for moving system functions away from pin_a7 when the serial
hardware receive function of that pin is desired. By placing a current limit resistor on pin_a7 before connecting
it to an RS232 receive buffer, the initial download function can be made to work. The initial download program
should use rs_dbparam_set to move the download pin to another available general purpose I/O line. From this
point on, all programs should contain the following first lines in main:

FUNC none main
 rs_dbparam_set(rs_invert | rs_19200 | pin_a5) ; remap DL to pin a5
 debug_on()

This will cause the interpreter to perform an unsuccessful debug connect on pin_a7 at power on, then remep the
DL line to pin_a5, then try another initial debug connect. This allows you to do all normal debug functions while
using pin_a7 for the SCI hardware function instead of the DL function.

rs_param_get Get RS232 parameters
byte rs_param_get()

Reads the current output type, baud rate, and pin number for serial RS232 communications. See the
rs_param_set function for more details. In TICkit 63 or 74 devices, this function is identical to the
rs_rxparam_get function and only returns the serial receive parameter.

rs_txparam_get Get serial parameter for transmit functions
byte rs_txparam_get()

Reads the current output type, baud rate, and pin number for serial RS232 transmit functions. See the
rs_param_set function for more details. This function only available in TICkit 63 or 74 devices.

rs_rxparam_get Get serial parameter for receive functions
byte rs_rxparam_get()

Reads the current output type, baud rate, and pin number for serial RS232 receive functions. See the
rs_param_set function for more details. This function only available in TICkit 63 or 74 devices.

rs_conparam_get Get serial parameter for console functions
byte rs_conparam_get()

Reads the current output type, baud rate, and pin number for serial RS232 console functions. See the
rs_param_set function for more details. This function only available in TICkit 63 or 74 devices.

rs_dbparam_get Get serial parameter for debug functions
byte rs_dbparam_get()

Reads the current output type, baud rate, and pin number for serial RS232 debug functions. See the
rs_param_set function for more details. This function only available in TICkit 63 or 74 devices.

rs_break Send RS232 break condition
none rs_break()

Sends a break condition for the baud rate and pin specified by the rs_parameter. This function literally sends a
space level for 13.5 bit times. A break condition is technicaly a space level for at least 10 consequtive bit times.
Normally, because rs232 consists of a start bit, 9 data bits, and at least on stop bit, no more than 9 consequtive
space levels should occur before a mark level. Since an idle rs232 line is at mark level, a break condition will
never occur as long as normal communication is taking place. Historically, break conditions were used to
communicate a piece of information which is extraordinary to the normal data stream. The name "break" is
derived from time share systems in which a break condition was used to interrupt the remote computer's program
execution and return to an OS prompt. Breaks are also used to indicate the beginning of data frames etc. in serial
packet protocols. Most asynchronys receivers interpret a break as a framing error with a data result of 0. By
testing for this condition, breaks can be detected and used to advantage. The TICkit62 can use a break condition
as a prefix for an address byte in the rs_recblock function.

5 Standard Library FBasic TICkit

112 Protean Logic Inc.

rs_send Send byte out RS232 pin (TICkit57 only)
none rs_send(byte data, byte brk)

Send the value "data" out conforming to the RS232 timing standards. Input and output levels, as well as baud
rate and pin are determined by the current contents of the rs_param register. A non-zero value for "brk" will
cause an incorrect stop bit level to be sent, which is interpreted by most receivers as either a framing error or a
break condition.

rs_send Send byte out RS232 pin (TICkits 62, 63, 74)
none rs_send(byte data)

Send the value "data" out conforming to the RS232 timing standards. Input and output levels, as well as baud
rate and pin are determined by the current contents of the rs_param register. Break conditions can be generated
using pulse functions or pin functions and timing delays.

rs_receive Receive byte in RS232 pin (TICkit57 only)
byte rs_receive(word wait, byte err)

Receive a byte through a general purpose I/O pin. Input and output levels, as well as baud and pin information
are determined by the current contents of the rs_param register. This function will wait approximately (16us *
wait) for a start bit before returning an error. A zero value for wait, or a value greater than 65280 will cause an
indefinite wait for a start bit. Error codes are: 0 = no error, 1=framing error (break), 2=timeout for start, 4=no
initial mark level.

rs_receive Receive byte in RS232 pin (TICkits 62, 63, 74)
byte rs_receive(byte wait, byte control, byte err)

Receive a byte through a general purpose I/O pin. Input and output levels, as well as baud and pin information
are determined by the current contents of the rs_param register. This function will wait approximately (4096us *
wait) for a start bit before returning an error. A zero value for wait produces an indefinite wait for a start bit.
The control byte is used to select a general purpose pin for handshake (lower four bits) and to enable
handshaking by setting bit 4. Error codes are: 0 = no error, 1=framing error (break), 2=timeout for start, 4=no
initial mark level.

rs_recblock Receive array of bytes in RS232 pin (TICkit 62 only)
byte rs_receive(byte wait, byte control, byte address,~
 ~byte buffer[], byte buf_size)

Receive a block of bytes through a general purpose I/O pin. Input and output levels, as well as baud and pin
information is determined by the current contents of the rs_param register. This function will wait approximately
(4096us * wait) for a start bit before returning an error. A zero value for wait will cause an indefinite wait for a
start bit and indefinate wait for all characters in a message. The return value indicates if there was an error, and
if so how many characters were received. If the return value is 0, no errors occured and the entire block was
received. If an error occurs, the return value will be 128 les the number of bytes not received.

The address byte is the byte to match before bytes are captured into the buffer. The buffer is an array of bytes
that must be at least as large as buf_size to prevent adjacent memory from being overwritten. The rs_recblock
function will continue to capture serial data until either the function times out or the buffer is filled.

The control parameter contains information about handshake, block qualifying and message timing. The lower
four bits of the control byte are the handshake pin. If bit 7, the most significant bit is set, the rs_recblock will
wait for a break on the line before receiving a block. If bit 6 is set, rs_recblock will wait for a byte that matches
the address byte before receiving the block. If bit 5 is set, rs_recblock will wait for 32*buf_size character
attempts otherwise rs_recblock will wait for 8*buf_size character attempts. If bit 4 is set, rs_recblock will assert
the handshake line, otherwise the handshake pin will remain unchanges by rs_recblock. In order for proper
break detection to work, the RS system must be set to check the stop bit using rs_stop_chek function.

NOTE: rs_recblock is implemented very differently in the TICkits 63 and 74 libraries. They have similar
operational parameters. Therefore, there may be subtle differences in operation from the TICkit 62's rs_recblock
function.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 113

rs_scanf Scan a stream of RS232 characers and extract fields (TICkit 63 & 74)
word rs_scanf(byte wait, byte control, ...)

This function receives a sequence of RS232 characters through a general purpose pin as specified in the
rs_rxparam register. The input stream is scanned looking for fields as specified by the field list. The number of
fields is determined at run time by ending the calling list with the SCANF_END field list ending specifier.
Fields can be single byte values, Characters, Integer types, Floating point types, or strings. Field can be matched,
ignored or stored all of which is determined by the field specifier byte required by each field. The table below
specifies the field types, options, and additional associated parameters that must appear in the calling string.

FIELD SPECIFIER Field logic Variable

scanf_end ends field list (REQUIRED!)

scanf_snumb n byte scientific notation string byte[]
scanf_rnumb n byte real string byte[]
scanf_jnumb n byte integer string byte[]
scanf_wstr n byte word string (no white chars) byte[]
scanf_str n byte string (any chars) byte[]

scanf_msnumb match scientific notation string byte[]
scanf_mrnumb match real string byte[]

 scanf_mjnumb match integer string byte[]
scanf_mwstr match word string byte[]
scanf_mstr match string (any chars) byte[]

scanf_isnumb ignore scientific notation string none
scanf_irnumb ignore real string none
scanf_ijnumb ignore integer string none
scanf_iwstr ignore word string none
scanf_istr ignore string (andy chars) none

scanf_xerr exit on framing errors none
 scanf_ierr ignore framing errors none

scanf_none skip this field none

NOTE: It is the programmers responsibility to ensure that the last field specifier is a SCANF_END. Variable
references must match the parameters specified. An improper number of arguments or the wrong type of
arguments can and almost certainly will cause unrecoverable errors which will require the TICkit to be reset to
resume proper operation.

This function returns a word. The upper byte of the returned value indicates the number of fields received
without error. The lower byte indicates the number of repeated values on the last field that were NOT received,
usually as a result of an error.

rs_string Send a string of bytes out RS232 pin
none rs_string(word string_addr) ; rs_str62.lib, rs_str57.lib required

This function sends a string of characters located in EEprom out of a general purpose pin in RS232 serial
format. The pin, baud_rate, and levels are defined by the rs_param_set function. The string must be
null-terminated.

rs_delay Delay one and one half RS232 bit times
none rs_delay()

Delay one and one half bit time. Use this function to produce the minimum required delay when sending a serial
byte on the same pin just used to receive serial information. This delay is required to prevent a framing error or
data overrun. Additional time delay may be required if the sending device will need to do any processing before
being ready to receive serial data. The baud rate used to calculate the delay time is contained in the rs_param
register.

5 Standard Library FBasic TICkit

114 Protean Logic Inc.

rs_stop_chek Set RS232 stop bit protocol on
none rs_stop_chek()

This function causes the level of the stop bit to be checked after each RS232 byte is received. Framing errors
can only be detected by checking the stop bit. Additional time is required to check the stop bit, however. Some
programs may wish to ignore the stop bit to gain more time for handling continuous serial information.

rs_stop_ignore Set RS232 stop bit protocol off
none rs_stop_ignore()

This function causes the level of the stop bit to be ignored after each RS232 byte is received. Additional time for
processing continuous serial information is available by ignoring the stop bit. Framing errors can only be
detected by checking the stop bit, however.

rs_fmt Sends a formatted long out RS232 pin
none rs_fmt(long value, word form) ; rs_fmt57.lib, rs_fmt62.lib required

This function formats the long argument value into a string of characters on the basis of the string form. This
function allows control of leading and trailing zeros, decimal point placement, and dollar sign. The format string
is a null terminated string contained in EEprom. The characters that have special meaning are as follows:

$ Print a '$' character in the output
Print a number if this or a previous digit was non-zero
0 Print a number even zero, forces following #'s to print
X Do not print a number digit, but account for its position
. Print a decimal point

Examples:

; listen for a break with this node's address

FUNCTION none wait_addr
 LOCAL byte errorval
 LOCAL byte rs_buffer[32]
BEGIN
 rs_stop_check() ; test stop bit for valid
 rs_param_set(rs_invert | rs_2400 | pin_a2)
 ; inverted, 2400, pin 10
 REP
 =(errorval, rs_recblock(100b,~
 ~ rs_cont_brk | rs_cont_addr | rs_cont_wait, ~
 ~ 'A', rs_buffer, 32b))
 IF errorval
 ELSE
 ; message received OK

proc_pack() ; process serial packet
 ENDIF
 LOOP
ENDFUN

5.14 RS232 Hardware Peripheral Functions
The TICkit 63 and 74 have built in hardware for receiving and transmitting RS232 in background. Although these
routines are not as flexible as the TICkit RS232 emulation routines, they have the advantage of handling greater speed
and of being able to operate while the TICkit is momentarily busy with other functions. The RS232 hardware is called the
Serial Communication Interface or SCI for short.

Notice that the transmitter and receiver share the same baud rate register and therefore must operate at the same speed.
Notice also that the pin assignments are fixed in hardware. This is of special concern in the TICkit 63 since the receive
pin is internally connected to pin A7 (the download pin) and the transmit pin is internally connected to pin A6 (the R/W
pin for bus operations). Notice also that the logic levels of the SCI are designed for connecting to industry standard buffer
ICs like the MAX232 IC or the 1489/1488 ICs. This is the equivilent of the "True" levels of the TICkit RS232 emulation
routines; there is no equivelent of the "Inverted" levels available in the SCI.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 115

If you use the SCI on the TICkit 63 use a 22K resistor in series between pin_A7 and the RS232 receive buffer. This will
allow the download function to work properly, while still allowing the buffer to be in circuit. You can re-map the debug,
and console functions to another pin for debugging or console I/O purposes using the program fragment shown below:

FUNC none main
BEGIN
 ; remap debug and download pin
 rs_dbparam_set(rs_invert | rs_19200 | pin_a5)
 ; remap the console pin
 rs_conparam_set(rs_invert | rs_19200 | pin_a5)
 debug_on()

The functions available for using the SCI are as follows:

sci_rxsta_get Get SCI Receiver status
byte sci_rxsta_get()

Returns the status of the SCI receiver section. The bits of the status register are defined as follows. Note: you
must read the status register before reading the contents of the SCI register to be sure of the extra data bit and
error values.

DEF sci_rxstat_bit9 0y00000001b ; 9th bit received
DEF sci_rxstat_over 0y00000010b ; indicates an overrun error
DEF sci_rxstat_frame 0y00001000b ; indicates a framing error
DEF sci_rxstat_cenbl 0y00010000b ; enable or continuous receive enable
DEF sci_rxstat_singl 0y00100000b ; for sync mode receive single byte
DEF sci_rxstat_nine 0y01000000b ; receive 9 bits
DEF sci_rxstat_port 0y10000000b ; configures I/O pins for SCI (A6, A7)

sci_txsta_get Get SCI Transmitter status
byte sci_txsta_get()

Returns the status of the SCI transmitter section. The bits of the status register are defined as follows:

DEF sci_txstat_bit9 0y00000001b ; 9th bit to transmit
DEF sci_txstat_empty 0y00000010b ; indicates transmit shift reg empty
DEF sci_txstat_baudr 0y00000100b ; baud divisor 0=Fosc/64, 1=Fosc/16
DEF sci_txstat_sync 0y00010000b ; indicates synch mode to be used
DEF sci_txstat_enabl 0y00100000b ; enable transmission
DEF sci_txstat_nine 0y01000000b ; send 9 bits
DEF sci_txstat_clk 0y10000000b ; clock source 0=ext, 1=internal

sci_baud_get Get SCI Baud Rate Divisor value
byte sci_baud_get()

Returns the baud divisor value. The actual baud rate is calculated according to the following formulas. Note: the
TXSTA baud rate bit determines which of the formulas is in effect. Fosc is the clock speed of the TICkit, either
20000000 for the T63H256 or 4000000 for the T63X256.

For txstat_baudr=0: baud_rate = Fosc / (64 * (sci_baud_reg + 1))

For txstat_baudr=1: baud_rate = Fosc / (16 * (sci_baud_reg + 1))

sci_reg_get Get SCI Received Data
byte sci_reg_get()

Returns the value received in the SCI receiver section. Reading this register automatically resets the interrupt
flag for the SCI. Note: If an overrun error has occured, the SCI_RXSTA register must be read to re-enable the
SCI receiver.

5 Standard Library FBasic TICkit

116 Protean Logic Inc.

sci_rxsta_set Set SCI Receiver status
none sci_rxsta_set(byte status_bits)

Sets the values of the SCI receiver status register.

sci_txsta_set Set SCI Transmitter status
none sci_rxsta_set(byte status_bits)

Sets the values of the SCI transmitter status register.

sci_baud_set Set SCI Baud Rate Divisor value
none sci_baud_set(byte rate_divisor)

Sets the baud rate divisor for the SCI.

sci_reg_set Set SCI Transmit Data
none sci_reg_set(byte send_data)

Places data into the SCI transmitters transmission que. As soon as any data currently being sent is finished. Data
in the sci_register is transfered to the transmit shift register. Note: This register is write only. Reading the
sci_register returns data received, it does not return data to be transmitted.

5.15 CONSOLE FUNCTIONS
The console functions use the internal serial I/O routines of the token interpreter to communicate to a console computer.
The console functions use the information contained in the rs_param_byte to determine which pin, baud rate, and line
levels to use for the communication. To communicate with the supplied software, the line must be inverted, and the baud
rate must be 9600 baud. Furthermore, to use the debugger console, only pin 15 (DL) can be used for the console pin.

The console functions perform special handshaking to ensure that the TICkit is listening while the console sends data to
it. Therefore, these routines should not be used to send non-TICkit protocol serial information. Use the serial
communications functions listed above for that purpose.

con_test Test for the existance of a console
byte con_test()

Returns zero to indicate a console listening on the console pin. Any other value returned indicates that no
console is listening.

con_in_char Get a character from console (TICkit57 only)
byte con_in_char(word wait) token.lib

Get an ASCII character from the console. The "wait" value indicates that the function should wait for only
wait*16us interval. This produces a maximum delay of approximately one second. A zero for wait, or a value
greater than 65280 will cause the function to wait indefinitely for input. Any characters typed on the console are
not echoed locally by the console.

con_in_char Get a character from console (TICkits 62, 63, 74)
byte con_in_char(byte wait) token.lib

Get an ASCII character from the console. The "wait" value indicates that the function should wait for only
wait*4096us interval. This produces a maximum delay of approximately one second. A zero for wait causes the
function to wait indefinitely for input. Any characters typed on the console are not echoed locally by the
console.

con_in_byte Get a byte from the console (TICkit57 only)
byte con_in_byte(word wait)

Get a value of size byte from the console. This function waits the same as the con_in_char function. Digits typed
on the console while entering the number are echoed locally within console.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 117

con_in_byte Get a byte from the console (TICkits 62, 63, 74)
byte con_in_byte(byte wait)

Get a value of size byte from the console. This function waits the same as the con_in_char function. Digits typed
on the console while entering the number are echoed locally within console.

con_in_word Get a word from the console (TICkit57 only)
word con_in_word(word wait)

Get a value of size word from the console. This function waits the same as the con_in_char function. Digits
typed on the console are echoed locally.

con_in_word Get a word from the console (TICkits 62, 63, 74)
word con_in_word(byte wait)

Get a value of size word from the console. This function waits the same as the con_in_char function. Digits
typed on the console are echoed locally.

con_in_long Get a long from the console (TICkit57 only)
long con_in_long(word wait)

Get a value of size long from the console. This function waits the same as the con_in_char function. Digits typed
on the console are echoed locally.

con_in_long Get a long from the console (TICkits 63, 74)
word con_in_long(byte wait)

Get a value of size long from the console. This function waits the same as the con_in_char function. Digits typed
on the console are echoed locally.

con_inx_byte Get a hexidecimal byte from the console (TICkits 63, 74)
byte con_inx_byte(byte wait)

Get a value of size byte from the console. This function waits the same as the con_in_char function. Digits typed
on the console while entering the number are echoed locally within console. Number is entered in hexidecimal
format.

con_inx_word Get a hexidecimal word from the console (TICkits 63, 74)
word con_inx_word(byte wait)

Get a value of size word from the console. This function waits the same as the con_in_char function. Digits
typed on the console are echoed locally. Number is entered in hexidecimal format

con_inx_long Get a hexidecimal long from the console (TICkits 63, 74)
word con_inx_long(byte wait)

Get a value of size long from the console. This function waits the same as the con_in_char function. Digits typed
on the console are echoed locally. Number is entered in hexidecimal format.

con_in_float Get a floating point value from the console (TICkits 63, 74)
float con_in_float(byte wait)

Returns a floating point value as entered on the console screen. Value entered may be normal 7 digit floating
point format or scientific notation.

con_out_char Send a byte character to the console
none con_out_char(byte data)

Send an ASCII character to a console. The byte "data" is sent to the console with instructions to the console to
display it as an ASCII character.

5 Standard Library FBasic TICkit

118 Protean Logic Inc.

con_out Sends a numeric value to the console, display in decimal
none con_out(byte data)
none con_out(word data)
none con_out(long data) ; not implemented in TICkit62

The value "data" is displayed on the console in decimal format. Long values are signed using the two's
complement convention.

con_outx Sends a numeric value to the console, display in Hexidecimal
none con_outx(byte data)
none con_outx(word data)
none con_outx(long data) ; not implemented in TICkit62

The value "data" is displayed on the console in hexidecimal format.

con_out_float Sends a floating point value to the console (TICkits 63, 74)
none con_out_float(float data)

The floating point value is displayed on the console. Format may be in scientific notation if too large to display
as a 7 digit number.

con_string Send a string of bytes out console pin
none rs_string(word string_addr) ; cn_str.lib required

This function sends a string of characters located in EEprom out of a general purpose pin in console serial
format. The pin, baud_rate, and levels are defined by the rs_param_set function. The string must be
null-terminated. The Debugger can recieve this type of signal.

con_fmt Sends a formatted long to the console
none con_fmt(long value, word format) ; cn_fmt.lib required

This function formats the long argument value into a string of characters on the basis of the string format. This
function allows control of leading and trailing zeros, decimal point placement, and dollar sign. The format string
is a null terminated string contained in EEprom. The characters that have special meaning are as follows:

$ Print a '$' character in the output
Print a number if this or a previous digit was non-zero
0 Print a number even zero, forces following #'s to print
X Do not print a number digit, but account for its position
. Print a decimal point

Examples:

; test for a console and add two signed numbers

FUNCTION none main
 LOCAL long val1
 LOCAL long val2
BEGIN
 rs_param_set(debug_pin)
 IF not(con_test())
 =(val1, con_in_long(0))
 =(val2, con_in_long(0))
 con_out(+(val1, val2))
 ENDIF
ENDFUN

5.16 Audio Playback Functions
Audio playback from EEprom using CCP outputs. Either of the two CCP output pins (pin_A2 and pin_A3 respectively)
are programmed for PWM output. This fast pulse train in pulse width modulated to yield a signal that is easily filtered
into standard audio output. The output filter should cut off above 22KHz. The PWM frequency for 20MHz devices are:
8bit (256 count) is 75KHz. 7bit (128 count) 150KHz. 5 bit (32 count) 600KHz. The PWM frequency for 4MHz devices
are: 8bit (256 count) is 15KHz. 7bit (128 count) 30KHz. 5 bit (32 count) 120KHz.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 119

Two sets of audio playback functions are provided. One set will play until the sample table is completed, the other will
halt if an interrupt condition is detected. Interrupts do not need to be enabled for the audio functions to halt. The
interruptable versions of the functions can be used in situations where playback must be interrupted on the basis of
hardware stimulus. Interrupt conditions examined only during repeated samples, so sample table may need to be altered
to ensure interrupts are detected promptly.

RESTRICTIONS:

1. Audio pattern cannot cross a 32K EEprom device boundry.
2. 4MHz devices must have a 3 repeated values at least once per 4ms to prevent RTC clock time loss
3. CCP register must be configured to match the playback format. Since TMR2 determines the period for PWM in

both CCP1 and CCP2, three versions of the playback function are provided. This allows the period to be either
256 counts, 128 counts, or 32 counts per cycle. 4MHz devices can only use 32 counts per cycle and acheive
good carrier vs signal seraration for filtering.

playback1-8-? Playback Audio Info in EEprom using 256 count period on CCP1
none playback1-8-0(word ee_address, word length, byte timing)
none playback1-8-1(word ee_address, word length, byte timing)
none playback1-8-2(word ee_address, word length, byte timing)
none playback1-8-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 8 bit (256 count pwm period). output signal on CCP1. The
last digit in the playback function name determines the EEprom bank which contains the audio information.

playbacki1-8-? Interruptable Audio Playback from EEprom (256 period on CCP1)
none playbacki1-8-0(word ee_address, word length, byte timing)
none playbacki1-8-1(word ee_address, word length, byte timing)
none playbacki1-8-2(word ee_address, word length, byte timing)
none playbacki1-8-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 8 bit (256 count pwm period). output signal on CCP1. The
last digit in the playback function name determines the EEprom bank which contains the audio information. This
function will halt upon detection of an interrupt condition.

playback2-8-? Playback Audio Info in EEprom using 256 count period on CCP2
none playback2-8-0(word ee_address, word length, byte timing)
none playback2-8-1(word ee_address, word length, byte timing)
none playback2-8-2(word ee_address, word length, byte timing)
none playback2-8-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 8 bit (256 count pwm period). output signal on CCP2.

playbacki2-8-? Interruptable Audio Playback from EEprom (256 period on CCP2)
none playbacki2-8-0(word ee_address, word length, byte timing)
none playbacki2-8-1(word ee_address, word length, byte timing)
none playbacki2-8-2(word ee_address, word length, byte timing)
none playbacki2-8-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 8 bit (256 count pwm period). output signal on CCP2.
This function halts upon interrupt condition.

playback1-7-? Playback Audio Info in EEprom using 128 count period on CCP1
none playback1-7-0(word ee_address, word length, byte timing)
none playback1-7-1(word ee_address, word length, byte timing)
none playback1-7-2(word ee_address, word length, byte timing)
none playback1-7-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 7 bit (128 count pwm period). output signal on CCP1.

5 Standard Library FBasic TICkit

120 Protean Logic Inc.

playbacki1-7-? Interruptable Audio Playback from EEprom (128 period on CCP1)
none playbacki1-7-0(word ee_address, word length, byte timing)
none playbacki1-7-1(word ee_address, word length, byte timing)
none playbacki1-7-2(word ee_address, word length, byte timing)
none playbacki1-7-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 7 bit (128 count pwm period). output signal on CCP1.
This functions halts upon interrupt condition.

playback2-7-? Playback Audio Info in EEprom using 128 count period on CCP2
none playback2-7-0(word ee_address, word length, byte timing)
none playback2-7-1(word ee_address, word length, byte timing)
none playback2-7-2(word ee_address, word length, byte timing)
none playback2-7-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use7 bit (128 count pwm period). output signal on CCP2.

playbacki2-7-? Interruptable Audio Playback from EEprom (128 period on CCP2)
none playbacki2-7-0(word ee_address, word length, byte timing)
none playbacki2-7-1(word ee_address, word length, byte timing)
none playbacki2-7-2(word ee_address, word length, byte timing)
none playbacki2-7-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use7 bit (128 count pwm period). output signal on CCP2.
This functions halts upon interrupt condition.

playback1-5-? Playback Audio Info in EEprom using 32 count period on CCP1
none playback1-5-0(word ee_address, word length, byte timing)
none playback1-5-1(word ee_address, word length, byte timing)
none playback1-5-2(word ee_address, word length, byte timing)
none playback1-5-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 5 bit (32 count pwm period). output signal on CCP1.

playbacki1-5-? Interruptable Audio Playback from EEprom (32 period on CCP1)
none playbacki1-5-0(word ee_address, word length, byte timing)
none playbacki1-5-1(word ee_address, word length, byte timing)
none playbacki1-5-2(word ee_address, word length, byte timing)
none playbacki1-5-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 5 bit (32 count pwm period). output signal on CCP1.
This function halts upon interrupt condition.

playback2-5-? Playback Audio Info in EEprom using 32 count period on CCP2
none playback2-5-0(word ee_address, word length, byte timing)
none playback2-5-1(word ee_address, word length, byte timing)
none playback2-5-2(word ee_address, word length, byte timing)
none playback2-5-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 5 bit (32 count pwm period). output signal on CCP2.

playbacki2-5-? Interruptable Audio Playback from EEprom (32 period on CCP2)
none playbacki2-5-0(word ee_address, word length, byte timing)
none playbacki2-5-1(word ee_address, word length, byte timing)
none playbacki2-5-2(word ee_address, word length, byte timing)
none playbacki2-5-3(word ee_address, word length, byte timing)

Play audio pattern contained in the 4 64K banks. Use 5 bit (32 count pwm period). output signal on CCP2. This
function halts upon interrupt condition.

5.17 Home Automation X-10 Protocol Power Line Carrier Control functions.
X-10 is a standard developed by "Power House, INC" TM. for controlling AC power devices through the AC wiring of a
building. Two interface modules are available for connecting into an X-10 network. The TW523 and the PL513 devices
plug into a wall socket and a 4 pin modular connector connects to the TICkit device. The following 4 functions allow the

FBasic TICkit 5 Standard Library

Protean Logic Inc. 121

TICkit to send and receive packets which areunderstood by a large number of X-10 devices including all of the Radio
Shack "PowerHouse" devices. The clock and data pin must be set for the other functions to work properly.

x10_xmitpins_set Set the Clock and Xmit pin for x10 transmit functions
none x10_xmitpins_set(byte clock_xmit)

Sets a register with the clock pin number in the upper nibble and the xmit pin number in the lower nibble. These
pin assignments are used for the x10_unit(), x10_comm(), and x10_immcomm() functions.

x10_recvpins_set Set the Clock and Recv pin for the x10 receive function
none x10_recvpins_set(byte clock_recv)

Sets a register with the clock pin number in the upper nibble and the xmit pin number in the lower nibble. These
pin assignment are used by the x10_receive() function.

x10_xmitpins_get Get the Clock and Xmit pin for x10 transmit functions
byte x10_xmitpins_get()

Returns the clock pin number in the upper nibble and the xmit pin number in the lower nibble.

x10_recvpins_get Get the Clock and Recv pins for x10 the receive function
byte x10_recvpins_get()

Returns the clock pin number in the upper nibble and the xmit pin number in the lower nibble.

 x10_unit Used to "wake up" a specific unit in a house to receive commands
none x10_unit(byte house_unit)

Sends a command to wake up the specified unit in the pecified house. The house codes are not a normal binary
sequence. The token library contains the following pre-defined symbols to reference the house and units by x10
protocol:

House Codes (A thru P)
DEF x10_a 0y01100000b
DEF x10_b 0y01110000b
DEF x10_c 0y01000000b
DEF x10_d 0y01010000b
DEF x10_e 0y10000000b
DEF x10_f 0y10010000b
DEF x10_g 0y10100000b
DEF x10_h 0y10110000b
DEF x10_i 0y11100000b
DEF x10_j 0y11110000b
DEF x10_k 0y11000000b
DEF x10_l 0y11010000b
DEF x10_m 0y00000000b
DEF x10_n 0y00010000b
DEF x10_o 0y00100000b
DEF x10_p 0y00110000b

Unit Codes (1 thru 16)

DEF x10_1 0y00000110b
DEF x10_2 0y00000111b
DEF x10_3 0y00000100b
DEF x10_4 0y00000101b
DEF x10_5 0y00001000b
DEF x10_6 0y00001001b
DEF x10_7 0y00001010b
DEF x10_8 0y00001011b
DEF x10_9 0y00001110b
DEF x10_10 0y00001111b
DEF x10_11 0y00001100b
DEF x10_12 0y00001101b
DEF x10_13 0y00000000b
DEF x10_14 0y00000001b
DEF x10_15 0y00000010b
DEF x10_16 0y00000011b

5 Standard Library FBasic TICkit

122 Protean Logic Inc.

x10_comm Sends commands to a listning unit in a house
 none x10_comm(byte house_comm)

Sends a command to the awake unit in the specified house. The available commands are listed below. When
sending dim or bright commands, the x10_immcomm should be used for subsequent repeated commands.

DEF x10_alloff 0y00000000b
DEF x10_lightson 0y00001000b
DEF x10_on 0y00000100b
DEF x10_off 0y00001100b
DEF x10_dim 0y00000010b
DEF x10_bright 0y00001010b
DEF x10_lightsoff 0y00000110b
DEF x10_extcode 0y00001110b

DEF x10_hailreq 0y00000001b
DEF x10_hailack 0y00001001b
DEF x10_predim 0y00000101b
DEF x10_prebright 0y00001101b
DEF x10_extdata 0y00000011b
DEF x10_staton 0y00001011b
DEF x10_statoff 0y00000111b
DEF x10_statreq 0y00001111b

x10_immcomm Sends a command to a unit without the usual 3 cycle delay
none x10_immcomm(byte house_comm)

Sends a command to the awake unit, just like the x10_comm() function except that it does not wait the 3
cycles normally required before commands. See the command defines for x10_comm for available commands.

x10_recv Receives an X-10 packet off the power line
byte x10_recv(byte house_unit, byte cycles)

Receives a command from TW523 is one is sent within the specified number of AC cycles. The data received
is stored in the house_unit parameter. The return value indicates any errors or if the data was a command. In all
the X-10 functions, clk_pin is the pin from the interface unit that indicates an AC zero crossing.
xmit_pin is the pin used to place data onto the AC line and rec_pin is data coming from the AC line. The
TW523 manufactured by "PowerHouse" has some limitations. TheTW523 cannot receive extended data and it
will only pass on every third DIM or BRIGHT command.

5.18 RC Servo Control Functions (Pulse Purportional Modulation).
The TICkit 63 can easily control 4 or more pulse purportional modular servos (Radio Control Servo). These devices
require a positive going pulse that varies in duration between 1ms and 2ms. 1ms is extreme rotation in one direction
while 2ms is extreme rotation in the other direction. These pulses need to be repeated between 50 and 100 times per
second to keep the position from drifting too much.

The TICkit 63 saves time while updating the servos by sending pulses out for up to 4 servos, simultaneously. Up to 4 pins
are required. The function below requires two arrays of 4 bytes each. The first array specifies the pin to use, the second
specifies the position each relative servo should assume. The valid positions are numbers between 0 and 199.

 servos Controls up to 4 Radio Control Style (PPM) electro-mechanical servos.
 none servos(byte times[4], byte pins[4])

If a any pin number is greater than 15, no pulse is generated for that array entry and no pin is affected by that
array entry. the times and pins arrays are related so that time[0] corresponds to pin[0]. This function is often
used with the RTC background interrupt timing routine to execute this function approximately 50 to 100 times
per second.

Example of using servo function with the background timing function

; TICkit 63 RC Servo Array test
; Using the Servo function and the RTC timer interrupt, Servos position
; in background, automatically. Foreground program simply places a number
; for the desired position of a servo in the correct servo_times[] byte
; and the background routine takes care of the rest.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 123

; The foreground routine simply moves the four servos one at a time between

; max and min positions. Motion is independent.

DEF tic63_c
LIB fbasic.lib

GLOBAL byte servo_times[4b]
GLOBAL byte servo_pins[4b]
GLOBAL byte my_count 0b
GLOBAL byte my_led 0b

FUNC none irq
BEGIN
ENDFUN

FUNC none stack_overflow
BEGIN
ENDFUN

FUNC none global_int
BEGIN
ENDFUN

FUNC none timer_int
BEGIN
 servos(servo_times[0b], servo_pins[0b])
 IF my_led
 pin_low(pin_d0)
 --(my_led)
 ELSE
 pin_high(pin_d0)
 ++(my_led)
 ENDIF

 irq_on()
ENDFUN

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 =(servo_pins[0b], pin_d7)
 =(servo_pins[1b], pin_d6)
 =(servo_pins[2b], pin_d5)
 =(servo_pins[3b], pin_d4)

 pin_low(pin_d7)
 pin_low(pin_d6)
 pin_low(pin_d5)
 pin_low(pin_d4)

 rtc_intdiv_set(5b)
 tmr1_cont_set(tmr1_con_on | tmr1_con_pre1)
 rtc_cont_set(rtc_enable | rtc_intm)
 con_out(rtc_cont_get())
 con_out_char(' ')
 con_out(rtc_intdiv_get())
 con_out_char(' ')
 con_out(rtc_secdiv_get())

5 Standard Library FBasic TICkit

124 Protean Logic Inc.

 delay(2000)
 pin_low(pin_d0)
 con_out(pin_test(pin_d0))
 delay(1000)
 pin_off(pin_d0)
 con_out(pin_test(pin_d0))
 delay (1000)
 irq_on()
 REP
 =(servo_times[0b], 0b)
 =(servo_times[1b], 0b)
 =(servo_times[1b], 0b)
 =(servo_times[1b], 0b)

 ; servo 1
 REP
 =(servo_times[0b] +(servo_times[0b], 1b))
 delay(1)
 UNTIL not(servo_times[0b])

 ; servo 2
 REP
 =(servo_times[1b] +(servo_times[1b], 1b))
 delay(1)
 UNTIL not(servo_times[1b])

 ; servo 3
 REP
 =(servo_times[2b] +(servo_times[2b], 1b))
 delay(1)
 UNTIL not(servo_times[2b])

 ; servo 4
 REP
 =(servo_times[3b] +(servo_times[3b], 1b))
 delay(1)
 UNTIL not(servo_times[3b])
 LOOP
ENDFUN

5.19 Rotary encoder function.
Two phase rotary encoders are a good way to provide angular position information to microcontrollers. The TICkit 63 is
suitable for situations where rotary information does not change too fast. As a rule of thumb, if there are less than 100
phase changes per second, the TICkit can keep up with rotary information. Rotary encoders can be used for mechanical
feedback in a servo system or for a dial input in a user interface. The following function will read up to two rotary
encoders and update a 16 bit count of the position.

rot_encoders Maintains the count/position of two rotary encoders
none rot_encoders(word counts[2], byte pins[4], byte control)

The counts array holds the current count for the two encoders. The pins array holds the pin numbers for the two
phase inputs of both encoders. The control byte holds current information about the two encoders and is used to
indicate if either encoder is being used or if the pins should be left alone.

5.20 The PC keyboard interface functions
The TICkit 63 and 74 have the ability to send and receive data to a standard IBM PCAT style keyboard. This interface is
a common standard for full keyboards, industrial hardenend keyboards and keypads, scaners, and other input devices.
Use this interface to take advantage of the large range of economical input devices on the market today. Data received
from keyboards are called scan codes and must be converted in your program to standard ASCII or other data format.
This is easily accomplished with a little logic and a lookup array, however.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 125

There are two standard pin arrangements for the PCAT keyboard. The older is a 5 pin DIN connector, the second is a
smaller 6 pin mini-din connector. Of the pins in this cable, only four are required. They are the power (+5vdc), ground,
clock and data. Both clock and data lines are open collector (open drain) and must be pulled high with resistors between
them and the +5vdc supply.

Once nice feature of this interface is the inherent input buffering and handshacking done byte PCAT keyboards. As long
as the clock line is held low by the TICkit, the IBM PCAT keyboard will buffer keystrokes and wait to send them until
the clock line is release to pull high. This allows the TICkit to preform other processing without missing keypresses
provided the buffer of the keyboard is not overrun. Most keyboards signal a buffer overrun by sending a 0x00 byte. The
two keyboard interface functions are as follows.

See the file PCAT2ASC.INC for rudimentary scan code documentation of the PCAT scan codes. Check the Protean
Logic web site for detailed application notes on scan codes.

keybdport_out Send a status or command code to a PCAT keyboard.
none keybdport_out(byte clkpin, byte datapin, word max_wait, byte dcode)

This function sends the specified data code out the PCAT keyboard interface to the device connected to it.
The max_wait parameter specifies the maximum amount of time to wait for the PCAT to clock data before the
function returns. This is useful to prevent a missing or defective keyboard from stalling a TICkit program.
Max_wait is specified in 60us intervals.

keybdport_in Get a status code or scan code from the PCAT keyboard interface.
byte keybdport_in(byte clkpin, byte datapin, word max_wait)

This function is used to get scan codes or status codes from a PCAT keyboard. If no valid data is received
within the max_wait period, a 0xFF is returned. This function assumes that the clock pin is previously held low
and that the data pin is an input. Max_wait is specified in 60 us intervals.

5.21 The Frequency Output functions (synthesized SIN Waves)
The TICkit 63 and 74 can generate a complex pulse period modulated output on a pin which filters to sine wave output.
This output can be a single sine wave, a composit of two sine waves of different frequency or a composit of four sine
waves of different frequency. The amplitude of the various sine wave components are all equal. This allows the TICkit to
generate signals useful for DTMF signaling over phone quality analog lines, or for relatively complex 4 voice music
synthesis. The frequency of each sine wave within the signal is determined by a word value. However, the values for
determining the frequency should only vary between 0 (no signal) or 1 to 16384. This prevents aliasing as a result of too
few analog samples per cycle. Values over 32768 will produce strange sounding signals that may be of value for sound
effects.

The output of these functions can be easily amplified using a radio shack utility amplifer (p/n 277-1008C). The output
can also be filtered using a few 10uf caps as shown below, or using a resistive PI filter as shown below for high
impedance loads. Of course, better filters can be constructed using more advanced techniques for better results. Filters
should have a steep rolloff at approximately 1/2 the playback sample rate.

The freq functions behave differently on 4MHz versus 20MHz devices. The 20MHz devices use a frequency granule of
approximately 0.2543 Hz and a time granule of 60 us. The 4MHz devices use a frequency granule of 0.05226 Hz and a
time granule of 290 us. The three versions of the synthesis functions are:

freq_gen1 Generate an analog output composed of a single sine wave.
none freq_gen1(byte pin_out, word duration, word frequency)

Output a sine wave on pin 'pin_out' for a duration and frequency as specified.

freq_gen2 Generate an analog output composed of two sine waves.
none freq_gen2(byte pin_out, word duration, word freq1, word freq2)

Output a wave on pin 'pin_out' for a duration as specified. The signal will be the sum of two sine waves of
frequency as specified. The sine waves are of equal amplitude and begin in phase.

5 Standard Library FBasic TICkit

126 Protean Logic Inc.

freq_gen4 Generate an analog output composed of four sine waves.
none freq_gen4(byte pin, word duration, word freqs1[2], word freqs2[2])

Output a wave on pin 'pin_out' for a duration as specified. The signal will be the sum of four sine waves of
frequency as specified. The sine waves are of equal amplitude and begin in phase. Notice that the third and
fourth frequency are the second entries in the two, two value array parameters freqs1 and freqs2.

5.22 Dallas Semiconductor (TM) 1-wire buss support
The TICkit 63 and 74 can generate the bit timing required to implement a bus master for a Dallas Semiconductor 1-wire
multidrop network. This unique protocol allows multilple sensors to be connected on a single pair of wires. Remote
devices can be powered through the data line and a sophisticated combination of laser masked serial numbers and
indentification protocols allows a master to determine what devices are on the net and how to address each one
individually. Only the bit timing is implemented at low level on the TICkit processors, so FBasic routines are required to
implement the complete protocol.

d1wire_reset Generates the 500us reset pulse and returns the presence pulse
byte d1wire_reset(byte pin_number)

This function generates a 500 us low going pulse on the bus, then listens for any presence pulses from slave
devices. If presence pulses occur, this function returns 255, otherwise it returns 0. Leaves pin_number wire
floating (pulled up).

d1wire_read Generates a window pulse and returns the bit level on the bus
byte d1wire_read(byte pin_number)

This function generates a 1us (nominal) low going pulse to clock a data bit window then reads the level of the
bus. If a high data level is present, this function returns 255, otherwise it returns 0. Leaves pin_number wire
floating (pulled up).

d1wire_sendhigh Generates a window pulse and sends a high level on the bus
d1wire_sendhigh(byte pin_number)

This function generates a 1us (nominal) low going pulse to clock a data bit window, then sends a high level on
the bus. The user must ensure that no other low levels occur on the bus within 60 us of the window clock. In the
TICkit, very few instructions could effect the line that quickly, even a single token fetch requires a minimum of
50 us. Leaves pin_number wire high for parasitic powering purposes.

d1wire_sendlow Generates a window pulse and sends a low level on the bus
d1wire_sendlow(byte pin_number)

This function generates a 1us (nominal) low going pulse to clock a data bit window, then sends a high level on
the bus. The user can generate additional activity immediately after this function with no timing violation.
Leaves pin_number wire high for parasitic powering purposes.

5.23 The RTC background timing functions
The TICkit 63 also has some background timing capabilities. TMR1 can be dedicated to counting either external cycles
or the Oscillator cycles of the TICkit. The RTC performs two distinct rolls for TICkit programs. The first is a periodic
interrupt generation system, the second is a 32bit elapsed time timer.

When the RTC functions are enabled, the TICkit 63 can generate a real time count of seconds and generate an periodic
interrupt. The RTC's basic unit of time is 1/250 sec or 4ms. Interrupts can take place at any multiple of this unit up to
255. So, a value of 125 will cause an interrupt every 1/2 second. The rtc_intf is cleared automatically whenever the
"timer_int" routine is serviced. When the specified number of tics (4ms each) have elapsed, a routine named "timer_int"
is called when the current token finishes execution. The periodic counters are automatically restarted in anticipation of
the next period. The "timer_int" routine can execute any additional functionality required then executes "irq_on" before
finishing. When the "timer_int" routine finishes execution, the main program resumes operations immediately following
the token where it called the period interrupt routine. This makes the periodic operations transparent to the main routine.
Even when the "rtc_intm" bit of the rtc_control register is low and the periodic interrupt is disabled, the "rtc_period" bit

FBasic TICkit 5 Standard Library

Protean Logic Inc. 127

of the rtc_control register is set when a period elapses. The main program can monitor this pin to determine when a
period has elapsed by polling the rtc_control register.

When the RTC functions are enabled, the TICkit 63 measures elapsed time. By setting the seconds count divider to 250, a
32 bit count of elapsed seconds is generated. This can be converted to a month, day, year format or used as a elapsed
time measure for data acquisition. By setting the second count divider to a value of 1, a 32bit count of elapsed tics is
generated where each tic is 4ms in duration.

There are 7 registers associated with the TICkit 63/74 RTC functions:

1. The RTC (cont) control register which contains the RTC enable, interrupt masks, and other flags
2. The RTC (intdiv) interrupt divider register. This register determines how many 4ms tics elapse before a

periodic interrupt is triggered.
3. The RTC (inttic) interrupt tics register. This is the current count of tics elapsed since the last periodic interrupt

was flagged. (Not necessarily since it was serviced)
4. The RTC (secdiv) seconds divider register. This register determines how many 4ms tics must elapse before the

"seconds" counter is incremented. Of course, this means that the seconds counter can count intervals between
4ms each and 1.024 seconds each. Because the RTC_SECDIV register is 250 at power-up, the 32bit counter is
called the "seconds" counter

5. The RTC (sectic) seconds tics register. This is the current count of tics elapsed since the last increment of the
"seconds" counter.

6. The RTC (timer) seconds counter. This 32 bit register counts the number of timer intervals that has elapsed
since power-up or since the timer was reset. Becasue the RTC_SECDIV register's default is 250, the
RTC_TIMER register is refered to as the "seconds" counter.

In addition to simply keeping time and generating interrupts, the RTC also can serve as a real time basis for timing real
time activity. The real time operations implemented allow reporting of the full RTC count, storing up to two "MARK"
structures inside the TICkit for later comparison, compare current time against specified mark and report if time specified
time has elapsed, compare current time against specified mark and wait until specified time has elapsed. These functions
allow the TICkit to perform in a time consistent manner for critically timed REAL TIME applications.

rtc_cont_set Set bits in the RTC control register according to the mask
none rtc_cont_set(byte control_mask)

The parameter for this function is used as a mask to set cooresponding bits in the RTC control register. Any bit
that is high in the parameter mask will be set in the RTC control register. Any bit that is low in the parameter
mask will remain unchanged. Below is a table specing the bits of RTC control register:

 rtc_intf 0y10000000b ;Flags a periodic interrupt
 rtc_intm 0y01000000b ;Flag to enable periodic interrupts
 rtc_enable 0y00100000b ;Flag to enable all RTC functions
 rtc_period 0y00000100b ;Flag indicates a period has elapsed
 rtc_rollover 0y00000010b ;Flag indicates a 32bit counter rollover

rtc_cont_clr Clear bits in the RTC control register accorging to the mask
none rtc_cont_clr(byte control_mask)

The parameter for this function is used as a mask to set cooresponding bits in the RTC control register. Any bit
that is high in the parameter mask will be cleared in the RTC control register. Any bit that is low in the
parameter mask will remain unchanged. See rtc_cont_set function for the meanings of the bits in the RTC
control register. Unlike most interrupt sources, whenever the timer_interrupt routine is called from the interrupt
handler, the rtc_intf bit of the rtc_control register is cleared automatically.

rtc_cont_get Get the contents of the RTC control register
byte rtc_cont_get()

This function reads the RTC control register. See the rtc_cont_set function for the meanings of the bits in the
RTC control register.

5 Standard Library FBasic TICkit

128 Protean Logic Inc.

rtc_intdiv_set Sets the interval for the periodic RTC interrupt
none rtc_intdiv_set(byte period)

This function is used to set the interval for the periodic RTC interrupt. The value specified is the number of
TICs (4ms) to elapse before a periodic interrupt is flagged. Once an interrupt is flagged, counting begins on the
next period.

rtc_intdiv_get Get the interval for the periodic RTC interrupt
byte rtc_intdiv_get()

This function reads the value of the rtc_invdiv register. The value read is the number of TICs (4ms each) that
must elapse within each period before a period interrupt is generated

rtc_inttic_set Sets the elapsed tic count for the RTC periodic interrupt
none rtc_inttic_set(byte count)

This function sets the value of the rtc_inttic register which counts the number of tics (4ms) elapsed in the current
period. This value can be monitored or modified to control special periodic processing.

rtc_inttic_get Gets the elapsed tic count for the RTC periodic interrupt
byte rtc_inttic_get()

This function returns the value of the rtc_inttic register which counts the number of tics (4ms) elapsed in the
current period. This value can be monitored or modified to control special periodic processing.

rtc_secdiv_set Sets the interval for the 32bit elapsed time counter (RTC_TIMER)
none rc_secdiv_set(byte period)

This function sets the division rate used to increment the 32bit elapsed time counter. By default the rtc_secdiv
register contains a value of 250 which will yield a count of seconds in the 32 bit counter (RTC_TIMER).

rtc_secdiv_get Gets the interval for the 32bit elapsed time counter
byte rtc_secdiv_get()

This function reads the division value for the 32bit elapsed time counter. This value is normally 250. A value of
125 yields 1/2 second counting in the RTC_TIMER. A value of 1 yields 4ms counting in the RTC_TIMER. If
this register contains 0, the RTC_SECTIC register can be used as the least significant byte of a 40 bit count of
elapsed tics.

rtc_sectic_set Sets the count of elapsed tics for the current timer interval
none rtc_sectic_set(byte count)

This function sets the count of tics that have elapsed within the current RTC_TIMER interval. This value ranges
between 0 and the value of the rtc_secdiv register but should always be less than the rtc_secdiv value.

rtc_sectic_get Gets the count of elapsed tics for the current timer interval
byte rtc_sectic_get()

This function returns the count of tics that have elapsed within the current RTC_TIMER interval. If the
rtc_secdiv value is 0, this function returns a value between 0 and 255 which can be used as the least significant
byte of a 40 bit count of elapsed tics.

rtc_timer_set Sets the 32bit count of elapsed timer intervals (RTC_TIMER)
rtc_timer_set(long count)

This function sets the 32bit count of elapsed time intervals called the RTC_TIMER. The exact duration of each
count is determined by the contents of the rtc_secdiv register. By default each count in the RTC_TIMER
represents 250 tics (4ms each) which yields 1 second per count of the RTC_TIMER.

rtc_timer_get Gets the 32bit count of elapsed time intervals (RTC_TIMER)
long rtc_timer_get()

This function reads the 32bit count of elapsed time intervals called the RTC_TIMER. Keep in mind that the
LONG type in fbasic is signed, and that the RTC_TIMER value is not. This may cause strange results in time
calculations if the counter bit 32 is set (extremely large counts).

FBasic TICkit 5 Standard Library

Protean Logic Inc. 129

rtc_report Gets the full RTC count (CLK count, TIC count, seconds count)
none rtc_report(word clk_count, byte tic_count, long sec_count)

This function reads and reports the full RTC count including the base clock cycle count of the processor (5 MHz
for 20MHz devices, and 1MHz for 4MHz devices). By reading the entire RTC count, the user does not need to
be concerned about a tic or second rollover between reads of the various registers.

rtc_mark1 Internal capture and stores current RTC count in mark1
none rtc_mark1()

This function captures the entire RTC count and stores it internally in mark location 1. The user can then
compare against this mark to determine if a specified time interval has elapsed.

rtc_mark2 Internal capture and stores current RTC count in mark2
none rtc_mark2()

This function captures the entire RTC count and stores it internally in mark location 2. The user can then
compare against this mark to determine if a specified time interval has elapsed.

rtc_linterval1 Test if specified long interval has elapsed since mark1
byte rtc_linterval1(word clk_delta, byte tic_delta, long sec_delta)

The specified RTC interval is added to the RTC count captured in mark1 and tested against the current time. If
the current time is equal or greater than the calculated target, rtc_linterval1 returns true. Mark1 is not altered by
this function. This function is called a long interval because it includes interval amounts beyond the tic count.

rtc_linterval2 Test if specified long interval has elapsed since mark2
byte rtc_linterval2(word clk_delta, byte tic_delta, long sec_delta)

The specified RTC interval is added to the RTC count captured in mark2 and tested against the current time. If
the current time is equal or greater than the calculated target, rtc_linterval1 returns true. Mark2 is not altered by
this function. This function is called a long interval because it includes interval amounts beyond the tic count.

rtc_sinterval1 Test if specified short interval has elapsed since mark1
byte rtc_sinterval1(word clk_delta, byte tic_delta)

The specified RTC interval is added to the RTC count captured in mark1 and tested against the current time. If
the current time is equal or greater than the calculated target, rtc_linterval1 returns true. Mark1 is not altered by
this function. This function is called a short interval because it only includes interval amounts expressed in tics.

rtc_sinterval2 Test if specified short interval has elapsed since mark2
byte rtc_sinterval2(word clk_delta, byte tic_delta)

The specified RTC interval is added to the RTC count captured in mark2 and tested against the current time. If
the current time is equal or greater than the calculated target, rtc_linterval1 returns true. Mark2 is not altered by
this function. This function is called a short interval because it only includes interval amounts expressed in tics.

rtc_lwait1 Wait until specified long interval from mark1 has elapsed
byte rtc_lwait1(word clk_delta, byte tic_delta, long sec_delta)

The specified RTC interval is added to the RTC count captured in mark1 and tested against the current time.
This routine will wait until the current time is equal or greater than the calculated target before returing. Mark1
is not altered by this function. This function is called a long wait because it includes interval amounts greater
than tics.

rtc_lwait2 Wait until specified long interval from mark2 has elapsed
byte rtc_lwait2 word clk_delta, byte tic_delta, long sec_delta)

The specified RTC interval is added to the RTC count captured in mark2 and tested against the current time.
This routine will wait until the current time is equal or greater than the calculated target before returing. Mark2
is not altered by this function. This function is called a long wait because it includes interval amounts greater
than tics.

5 Standard Library FBasic TICkit

130 Protean Logic Inc.

rtc_swait1 Wait until specified long interval from mark1 has elapsed
byte rtc_swait1(word clk_delta, byte tic_delta)

The specified RTC interval is added to the RTC count captured in mark1 and tested against the current time.
This routine will wait until the current time is equal or greater than the calculated target before returing. Mark1
is not altered by this function. This function is called a short wait because it only includes interval amounts
expressed in tics.

rtc_swait2 Wait until specified long interval from mark2 has elapsed
byte rtc_swait2(word clk_delta, byte tic_delta)

The specified RTC interval is added to the RTC count captured in mark2 and tested against the current time.
This routine will wait until the current time is equal or greater than the calculated target before returing. Mark2
is not altered by this function. This function is called a short wait because it only includes interval amounts
expressed tics.

5.24 SYSTEM, Interrupt and MISCELLANEOUS FUNCTIONS
The system functions are used to break or re-establish communication with the debugger, to control the interrupt
detection, and to reset the TICkit under software control. Using the debug_on() function while developing a program can
be a very useful method of tracing a program. Often, the programmer is only wishing to trace a small section of a
program. By placing the debug_on() function at the beginning of the section, the user can allow the program to operate at
full speed until it reaches the desired section, then the user can single step or watch variables for just the code in question.
When done tracing that section, the user can press 'E' of the debugger and the code will again execute at full speed. This
is often much faster than running a program in monitor code while looking for a break point.

The interrupt capability of the TICkit allows a special function in the program to be called at the request of an external
device. Provided that the interrupts have been enabled, when the /IRQ input line of the TICkit is brought low,
immediately after the current TICkit token finishes executing, the function named IRQ will be executed (vectored at
EEprom location 0x0002 and 0x0003). The interrupt is disabled as the IRQ function is called. Therefore, the program
must re-enable it to sense any additional interrupts. Usually the interrupts are re-enabled as the last line of the IRQ
routine. The TICkit62 has the added interrupt capability to sense multiple events caused by internal hardware stimulus.
For example, an interrupt can be generated when the Timer1 16bit counter rolls over. This interrupt is useful to
implement a real-time clock in background. For the TICkit62 there are three interrupt vectors:

1. /IRQ pin input - when line is brought low and interrupt occurs (57 and 62)
2. Stack overflow - when RAM memory is exceeded this interrupt occurs (62)
3. Internal peripheral - when a pre-programmed peripheral condition occurs (62)

The names of the functions call by each of these vectors is defined in the token library for each processor. By default they
are: "irq", "stack_overflow", and "global_int" respectively.

The internal peripheral interrupt (global_int) can be caused by multiple event sources. To help limit what events can
cause this interrupt, and to determine what event caused an interrupt while servicing it, mask registers and flag registers
are used. Each bit of the mask and flag registers coorespond to an event source. An event source will cause an interrupt
only if its cooresponding mask bit is set, otherwise that source is ignored. Likewise, if multiple event sources are allowed
to generate the interrupt, the servicing routine will need to determine which source caused this interrupt. This is done by
examining the contents of the flag registers. Only the event which caused the interrupt will have its cooresponding bit set.
Also, the flag for the interrupt source will need resetting at the end of the interrupt service routine.

no_operation No Operation - Waste 1 EEprom byte and 1 token fetch time.
none no_operation()

This function is used only to waste EEprom space, or to waste a small amount of time. 20MHz devices with
speed designation H will waste approximately 20us executing no_operation. 20MHz devices with speed
designation F will waste approximately 13us executing no_operation. 4MHz devices with speed designation X
will waste approximately 60us executing no_operation.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 131

tickit_version Get the TICkit version and identification number (TICkits 63, 74)
word tickit_version()

This function returns a word which contains the interpreter identification in the upper byte and a version number
in the lower byte. This information can be useful in determining proper action or for making programs that can
alter preformance based on what they are installed in. Useful for widely distributed source code.

debug_on Turn debug protocol on
none debug_on()

Attempts to establish a connection to a debugger on the console computer. The TICkit will try to establish this
connection for approximately 1.5 seconds.

debug_off Turn debug protocol off
none debug_off()

Terminates the debug connection with the console. Forces the program to execute in fast, un-monitored mode.

irq_on Turn interrupt sensing on
none irq_on()

Enables the Interrupt Service Requests. A low level on the /IRQ line will cause execution to resume at the
function named "IRQ" immediate following the execution of the current token. Because the interrupt service
flag is disabled by each service request, the service request routine will normally re-enable interrupts on exit by
executing this function. This function also enables hardware interrupt processing on the TICkit62. Therefore,
when using this function, be sure that all internal global interrupts are disabled, or the appropriate "global_int"
function exists for handling TICkit62 interrupts.

irq_off Turn interrupt sensing off
none irq_off()

Disables the Interrupt Request line. Use this function to prevent any interrupt from distracting the TICkit from a
time sensitive program.

reset Resets the token interpreter
none reset()

Simulates a power on start.

int_cont_set Sets control byte for global_int (TICkit62)
none int_cont_set(byte control_bits)

This function sets the bits of the TICkit62's global interrupt control register. This register contains the status and
mask of several interrupts and also masks the peripheral interrupts. The bit assignments for the interrupt control
register are as follows (standard defines for these detailed in the DEFINES section) :

bit 0 = Set if bits 4 thru 7 of the Data Port have changed.
bit 1 = Set if bit 0 of the Data Port has received an edge.
bit 2 = Set if RTCC (tmr0) has overflowed.
bit 3 = Enable Data port bits 4-7 change interrupt
bit 4 = Enable Data port bit 0 edge interrupt
bit 5 = Enable RTCC (tmr0) overflow interrupt
bit 6 = Enable peripheral interrupt sources.
bit 7 = Unused, must be set to zero.

int_cont_get Gets control byte for global_int (TICkit62)
byte int_cont_get()

This function gets the bits of the TICkit62's global interrupt control register. This register contains the status and
mask of several interrupts and also masks the peripheral interrupts.

5 Standard Library FBasic TICkit

132 Protean Logic Inc.

int_flag_set Sets Peripheral Flag byte (TICkits 62, 63, 74)
none int_flag_set(byte flags)

This function sets the bits of the TICkit's peripheral interrupt flag register. This register contains the status of
peripheral interrupts. Usually, this function is simply used to clear a serviced interrupt. Defines for each bit's
meaning are listed in the DEFINES section of this chapter. The bits are as follows:

bit 0 = Timer 1 overflow.
bit 1 = Timer 2 overflow.
bit 2 = CCP1 module interrupt (Capture or Compare)
bit 3 = SSP module (I2C port I/O)
bit 4 = SCI (hardware rs232) transmit interrupt
bit 5 = SCI (hardware rs232) receive interrupt
bit 6 = A to D interrupt
bit 7 = Parallel slave port int

int_flag_get Gets Peripheral Flag byte (TICkits 62, 63, 74)
byte int_flag_get()

This function gets the bits of the TICkit's peripheral interrupt flag register. This register contains the status of
peripheral interrupts. This function is used to determine which peripheral interrupts are pending and need
service.

int_flag2_set Sets Second Peripheral Flag byte (TICkits 63, 74)
none int_flag2_set(byte flags)

This function sets the bits of the TICkit63's peripheral interrupt flag register. This register contains the status of
peripheral interrupts. Usually, this function is simply used to clear a serviced interrupt. Defines for each bit's
meaning are listed in the DEFINES section of this chapter. The bits are as follows:

bit 0 = CCP2 module interrupt (Capture or Compare)
bit 1 = not used
bit 2 = not used
bit 3 = not used
bit 4 = not used
bit 5 = not used
bit 6 = not used
bit 7 = not used

int_flag2_get Gets Second Peripheral Flag byte (TICkits 63, 74)
byte int_flag2_get()

This function gets the bits of the TICkit63's peripheral interrupt flag register. This register contains the status of
peripheral interrupts. This function is used to determine which peripheral interrupts are pending and need
service.

int_mask_set Sets Peripheral Mask byte (TICkits 62, 63, 74)
none int_mask_set(byte mask)

This function sets the bits of the TICkit's peripheral interrupt mask register. This register contains the masks of
peripheral interrupts. Only the devices which their bits set will generate an interrupt. Bits map the same as the
peripheral flag register.

int_mask_get Gets Peripheral Mask byte (TICkits 62, 63, 74)
byte int_mask_get()

This function gets the bits of the TICkit's peripheral interrupt mask register. This register contains the masks of
peripheral interrupts.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 133

int_mask2_set Sets Second Peripheral Mask byte (TICkits 63, 74)
none int_mask_set(byte mask) token.lib

This function sets the bits of the TICkit's peripheral interrupt mask register. This register contains the masks of
peripheral interrupts. Only the devices which their bits set will generate an interrupt. Bits map the same as the
peripheral flag register.

int_mask2_get Gets Second Peripheral Mask byte (TICkits 63, 74)
byte int_mask2_get()

This function gets the bits of the TICkit's peripheral interrupt mask register. This register contains the masks of
peripheral interrupts.

Examples:

; handle an interrupt - also uses debug_on to create a type
; of fast break point. Program executes at full speed until
; debug_on.

FUNCTION none irq ; this irq handler will display the
 ; string then connect to a debugger
 ; if it is present, then, under debug
 ; control, return to the main process.
BEGIN
 con_string("responding to interrupt\r\l");
 debug_on()
 irq_on()
ENDFUN

FUNCTION none main
BEGIN
 rs_param_set(debug_pin)
 irq_on()
 REP
 LOOP
ENDFUN

5.25 Peripheral Control Functions
The processors on which the FBASIC interpreters are implemented have special I/O resources for performing more
complex tasks. These resources, called peripherals, can operate while the main processing function is doing something
else. The TICkit 57 has the RTCC (Tmr0) as its only peripheral device. As an example, the RTCC can count pulses or
clock cycles while the program continues to operate. The Functions used to control these devices would not normally be
considered part of a standard library. However, because of the inteded use of the processors for control applications, the
functions controlling the peripherals are assumed to be central to the task. For this reason, peripheral control functions
are included in FBASIC's standard library. Because the availability of peripherals is very processor dependent, be sure to
code with only the resources of the processor you will eventually use.

The TICkit 57 has only the RTCC for a peripheral. It's functions are outlined in the timing section of this chapter.

The TICkit 62 has the RTCC timer, but it also has two more timers, a module which can be programed to compare the
count in timer 1 with a preset value and interupt the processor on a match, or it can capture the count of timer 1 when the
CCP pin is activated, or it can use timer2 to generate a 10bit PWM signal and output that signal on the CCP pin. The
TICkit 62 also has an SSP (synchronys serial port) for use as an I2C port. All of these resources are controlled by writing
special control and data registers. Once setup, the peripheral devices operate in background while the program proceeds.

tmr1_cont_set Sets TMR1 control register (TICkit 62, 63, 74)
none tmr1_cont_set(byte control_bits)

This function sets the bits of the TICkit's timer 1 control register. The meanings of the bits of this register are as
follows:

bit 0 = Enables timer1 counter
bit 1 = When set clk is A0 pin, otherwise clk is OSC/4

5 Standard Library FBasic TICkit

134 Protean Logic Inc.

bit 2 = Synchronizes clk with OSC when set
bit 3 = Enables oscillator circuit on A0 and A1
bit 4 = Bits 4 and 5 select prescale value of 8(11), 4(10),
bit 5 = 2(01) or 1(00)
bit 6 = not used
bit 7 = not used

tmr1_cont_get Gets TMR1 control register (TICkits 62, 63, 74)
byte tmr1_cont_get()

This function gets the bits of the TICkit's timer 1 control register.

tmr1_count_set Sets TMR1 count (TICkits 62, 63, 74)
none tmr1_count_set(word count)

This function sets the count of the TICkit's timer 1.

tmr1_count_get Gets TMR1 count (TICkits 62, 63, 74)
word tmr1_cont_get()

This function gets the count of the TICkit's timer 1.

tmr2_cont_set Sets TMR2 control register (TICkits 62, 63, 74)
none tmr2_cont_set(byte control_bits)

This function sets the bits of the TICkit's timer 2 control register. The meanings of the bits of this register are as
follows:

bit 0 = Bits 0 and 1 select prescale value of 1(00), 4(01)
bit 1 = or 16(1x)
bit 2 = Enables timer 2 counting
bit 3 = Bits 3,4,5, and 6 select the postscale divisor
bit 4 = 0000 is divide by 1
bit 5 = while 1111 is divide by 16
bit 6 = Therefore, divisor = postscale setting + 1
bit 7 = not used

tmr2_cont_get Gets TMR2 control register (TICkits 62, 63, 74)
byte tmr2_cont_get()

This function gets the bits of the TICkit's timer 2 control register.

tmr2_count_set Sets TMR2 count (TICkits 62, 63, 74)
none tmr2_count_set(byte count)

This function sets the count of the TICkit's timer 2.

tmr2_count_get Gets TMR2 count (TICkits 62, 63. 74)
byte tmr2_count_get()

This function gets the count of the TICkit's timer 2.

tmr2_period_set Gets TMR2 period register (TICkits 62, 63, 74)
none tmr2_period_set(byte period)

This function sets the contents of the TICkit's timer 2 period register.

tmr2_period_get Gets TMR2 period register (TICkits 62, 63, 74)
byte tmr2_period_get()

This function gets the contents of the TICkit's timer 2 period register.

ccp1_cont_set Sets CCP1 control register (TICkits 62, 63, 74)
none ccp1_cont_set(byte control_bits)

This function sets the bits of the TICkit's CCP1 control register. The meanings of the bits of this register are as
follows:

FBasic TICkit 5 Standard Library

Protean Logic Inc. 135

bit 0 = Bits 0,1,2 and 3 select the mode of the CCP
bit 1 = 0000 = off, 01xx = capture mode
bit 2 = 10xx = compare mode, 11xx = PWM mode
bit 3 = bits 0,1 modify capture and compare modes.
bit 4 = In PWM mode this is the lowest order duty bit
bit 5 = In PWM mode this is the next lowest order bit
bit 6 = not used
bit 7 = not used

ccp1_cont_get Gets CCP1 control register (TICkits 62, 63, 74)
byte ccp1_cont_get()

This function gets the bits of the TICkit's CCP1 control register.

ccp1_reg_set Sets CCP1 register (TICkits 62, 63, 74)
none ccp1_reg_set(word contents)

This function sets the contents of the TICkit's CCP1 register. Depending on the mode of the CCP this can be a
comparison value for timer1, a result of a capture on timer1, or the lower 8 bits of the CCP1 register are the
higher 8 bits of the PWM duty cycle.

ccp1_reg_get Gets CCP1 register (TICkits 62, 63, 74)
byte ccp1_reg_get()

This function gets the contents of the TICkit's CCP1 register.

ccp2_cont_set Sets CCP2 control register (TICkits 63, 74)
none ccp2_cont_set(byte control_bits)

This function sets the bits of the TICkit63's CCP2 control register. The meanings of the bits of this register are
the same as that for CCP1.

ccp2_cont_get Gets CCP2 control register (TICkits 63, 74)
byte ccp2_cont_get()

This function gets the bits of the TICkit63's CCP2 control register.

ccp2_reg_set Sets CCP2 register (TICkits 63, 74)
none ccp2_reg_set(word contents)

This function sets the contents of the TICkit63's CCP2 register. Depending on the mode of the CCP this can be a
comparison value for timer1, a result of a capture on timer1, or the lower 8 bits of the CCP2 register are the
higher 8 bits of the PWM duty cycle.

ccp2_reg_get Gets CCP2 register (TICkits 63, 74)
byte ccp2_reg_get()

This function gets the contents of the TICkit63's CCP2 register.

ssp_cont_set Sets SSP control register (TICkits 62, 63, 74)
none ssp_cont_set(byte control_bits)

This function sets the bits of the TICkit's SSP control register. The meanings of the bits of this register are as
follows:

bit 0 = Bits 0,1,2 and 3 select the mode of the SSP
bit 1 = 01xx = slave only modes
bit 2 = 10xx = master support with slave modes
bit 3 = See defines for complete mode list.
bit 4 = Clk enable (allows clk to go high)
bit 5 = Enable the SSP (switches control of A3 and A4)
bit 6 = Receive Overflow flag
bit 7 = Write Collision detected

5 Standard Library FBasic TICkit

136 Protean Logic Inc.

ssp_cont_get Gets SSP control register (TICkits 62, 63, 74)
byte ssp_cont_get()

This function gets the bits of the TICkit's SSP control register.

ssp_buffer_set Sets SSP Buffer (TICkits 62, 63, 74)
none ssp_buffer_set(byte contents)

This function sets the contents of the TICkit's SSP buffer. Effectively, this function is used to transmit data on
the I2C port.

ssp_buffer_get Gets SSP Buffer (TICkits 62, 63, 74)
byte ssp_buffer_get()

This function gets the contents of the TICkit's SSP buffer. This reads data received from the I2C port.

ssp_addr_set Sets SSP Address (TICkits 62, 63, 74)
none ssp_addr_set(byte contents)

This function sets the contents of the TICkit's SSP address register. Interupts and data reception/transmission
only takes place after a start bit and a match to this address on the I2C port.

ssp_addr_get Gets SSP Address (TICkits 62, 63, 74)
byte ssp_addr_get()

This function gets the contents of the TICkit's SSP address register.

ssp_status_get Gets SSP Status (TICkits 62, 63. 74)
byte ssp_status_get()

This function gets the contents of the TICkit's SSP status register. The meanings of the bits of this register are as
follows:

bit 0 = Receive Buffer full (byte in buffer for reading)
bit 1 = Update Address required (place in ssp_address)
bit 2 = Current message is a read message
bit 3 = Start bit was detected last
bit 4 = Stop bit was detected last
bit 5 = Last byte received was a data byte (not an address)
bit 6 = not used
bit 7 = not used

Examples:

; Sample program to illustrate using TICkit62 SSP to do
; I2C slave operations. Keep in mind that the master in this
; system must transmit data with spacing between bytes. If
; using a TICkit as the master, use the sim_i2c library to
; generate the signals.

DEF tic62_a
LIB fbasic.lib

GLOBAL byte iic_addr 0b
GLOBAL byte iic_comm 0b

FUNC none irq
BEGIN
 irq_on()
ENDFUN

FBasic TICkit 5 Standard Library

Protean Logic Inc. 137

FUNC none global_int
 LOCAL byte iic_data
BEGIN
 =(iic_data, ssp_buffer_get())
 IF b_and(ssp_stat_get(), ssp_stat_data)
 IF iic_comm
 con_out_char('\r')
 con_out_char('\l')
 con_out_char('A')
 con_out(iic_addr)
 con_out_char(' ')
 con_out(iic_comm)
 con_out_char(' ')
 con_out(iic_data)
 ELSE
 =(iic_comm, iic_data)
 ENDIF
 ELSE
 IF b_and(ssp_stat_get(), ssp_stat_read)
 ssp_buffer_set(0x18b)
 ELSE
 =(iic_addr, iic_data)
 =(iic_comm, 0b)
 ENDIF
 ENDIF

 ssp_cont_set(ssp_mode_slave7 | ssp_con_clken |~
 ~ssp_con_enable)
 int_flag_set(0b)
 irq_on()
ENDFUN

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 int_cont_set(int_con_periphe)
 int_mask_set(int_mask_ssp)
 int_flag_set(0b)

 ssp_addr_set(0x80b)
 ssp_cont_set(ssp_mode_slave7 | ssp_con_clken |~
 ~ssp_con_enable)
 irq_on()

 REP
 LOOP
ENDFUN

5 Standard Library FBasic TICkit

138 Protean Logic Inc.

Examples:

; This program will generate a square wave of varying duty
; cycle on the CCP1 pin. This method is used to perform PWM
; control of motors etc.

DEF tic62_a
LIB fbasic.lib

GLOBAL word duty ; only the lower 8 bits are used.

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 =(duty, 0)
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(255b) ; determines frequency
 ccp1_cont_set(ccp_pwm)
 REP
 ccp1_reg_set(duty)
 delay(10)
 ++(duty)
 LOOP
ENDFUN

5.26 Analog to Digital Conversion Peripheral Functions (74 only)
The TICkit 74 has an 8 bit internal analog to digital converter. This hardware is controlled via a few registers for
determining which pin (channel) to sample and basic control bits. The functions are as follows:

a2d_result_get Gets the result of an A/D conversion (TICkit 74)
byte a2d_result_get()

This function reads the result of the conversion. Normally result is ratiometric where 255 = supply voltage and 0
= ground.

a2d_control0_set Sets the A/D control0 register (TICkit 74)
none a2d_control0_set(byte bit_pattern)

This function is used to configure the A/D hardware of the TICkit 74. The following table summarizes the flags
in the control0 register:

a2d_osc2 ; Divide clock by 2 for A/D time base
a2d_osc8 ; Divide clock by 8 for A/D time base
a2d_osc32 ; Divide clock by 32 for A/D time base
a2d_oscrc ; Use RC circuit for A/D time base

a2d_chanm ; Mask for channel select bits
a2d_chan0 ; Select channel 0 for A/D input (pin_v0 aka pin_ad0)
a2d_chan1 ; Select channel 1 for A/D input (pin_v1 aka pin_ad1)
a2d_chan2 ; Select channel 2 (not allowed in TICkit 74 processors)
a2d_chan3 ; Select channel 3 for A/D input (pin_v3 aka pin_ad3)

a2d_busy ; Bit is high while converting, low when done
a2d_start ; Set bit to start a conversion
a2d_on ; Turns A/D converter on and powers internal R ladder

a2d_control0_get Gets the A/D control0 register contents (TICkit 74)
byte a2d_control0_set()

This function is used to read the A/D hardware configuration of the TICkit 74.

FBasic TICkit 5 Standard Library

Protean Logic Inc. 139

a2d_control1_set Sets the A/D control1 register (TICkit 74)
none a2d_control1_set(byte bit_pattern)

This function is used to configure the pin assignments of A/D hardware in the TICkit 74. The VPORT pins can
be assigned to digital I/O purposes, or to analog input channels. The following table summarizes the flags in the
control1 register:

a2d_none ; No pins are assigned to analog conversion all digital
a2d_013 ; Pins V0, V1, and V3 are assigned as analog inputs
a2d_013r ; Pins V0, V1 are analog inputs; V3 is voltage reference

a2d_control1_get Gets the A/D control1 register contents (TICkit 74)
byte a2d_control1_get()

This function is used to read the pin assingments of A/D hardware in the TICkit 74.

5.27 Constant Symbols Defined in Libraries
DEFINE buss_8bit 0y10000000b
DEFINE buss_4two 0y01000000b
DEFINE buss_4bit 0y00000000b

IFDEF tic63x_i DEF debug_pin 0xDFb ; 4MHz uses 9600 baud
IFNDEF tic63x_i DEF debug_pin 0xEFb

DEF rs_invert 0x80b
DEF rs_19200 0x60b
DEF rs_9600 0x50b
DEF rs_4800 0x40b
DEF rs_2400 0x30b
DEF rs_1200 0x20b
DEF rs_600 0x10b
DEF rs_300 0x00b

; 62 versions have the following 3 defines
;DEF rs_cont_brk 128b
;DEF rs_cont_addr 64b
;DEF rs_cont_wait 32b
DEF rs_cont_hand 16b
DEF rs_cont_nopar 32b

DEF pin_a7 0x0Fb
DEF pin_a6 0x0Eb
DEF pin_a5 0x0Db
DEF pin_a4 0x0Cb
DEF pin_a3 0x0Bb
DEF pin_a2 0x0Ab
DEF pin_a1 0x09b
DEF pin_a0 0x08b

DEF pin_d7 0x07b
DEF pin_d6 0x06b
DEF pin_d5 0x05b
DEF pin_d4 0x04b
DEF pin_d3 0x03b
DEF pin_d2 0x02b
DEF pin_d1 0x01b
DEF pin_d0 0x00b

DEF false 0x00b
DEF true 0xffb

5 Standard Library FBasic TICkit

140 Protean Logic Inc.

DEF tmr1_con_on 0y00000001b ; turn on timer1
DEF tmr1_con_ext 0y00000010b ; external, rising edge clock source
DEF tmr1_con_sync 0y00000100b ; synchronize to osc clk
DEF tmr1_con_osc 0y00001000b ; enable oscillator (inverter feedback)
DEF tmr1_con_pre1 0y00000000b ; prescaler divide by 1
DEF tmr1_con_pre2 0y00010000b ; prescaler divide by 2
DEF tmr1_con_pre4 0y00100000b ; prescaler divide by 4
DEF tmr1_con_pre8 0y00110000b ; prescaler divide by 8

DEF tmr2_con_on 0y00000100b ; turn on timer2
DEF tmr2_con_pre1 0y00000000b ; prescaler divide by 1
DEF tmr2_con_pre4 0y00000001b ; prescaler divide by 4
DEF tmr2_con_pre16 0y00000010b ; prescaler divide by 16
DEF tmr2_con_post 0y01111000b ; mask for postscaler (divide by value)

DEF ssp_mode_div4 0y00000000b ; SPI master clk = OSC/4
DEF ssp_mode_div16 0y00000001b ; SPI master clk = OSC/16
DEF ssp_mode_div64 0y00000010b ; SPI master clk = OSC/64
DEF ssp_mode_divtmr2 0y00000011b ; SPI master clk = OSC/timer2
DEF ssp_mode_slave 0y00000100b ; SPI slave /SS enabled
DEF ssp_mode_slavd 0y00000101b ; SPI slave /SS disabled
DEF ssp_mode_slave7 0y00000110b ; slave only - 7bit address
DEF ssp_mode_slave10 0y00000111b ; slave only - 10bit
DEF ssp_mode_master 0y00001011b ; master support - slave disabled
DEF ssp_mode_mast7 0y00001110b ; master support - slave 7bit address
DEF ssp_mode_mast10 0y00001111b ; master support - slave 10bit address
DEF ssp_con_clken 0y00010000b ; clock enable (not held low)
DEF ssp_con_enable 0y00100000b ; SSP module enabled
DEF ssp_con_overflow 0y01000000b ; flag to indicate receiver overflow
DEF ssp_con_collide 0y10000000b ; collision during write to transmit reg

DEF ssp_stat_full 0y00000001b ; receive buffer is full
DEF ssp_stat_addr10 0y00000010b ; 10 bit address needs to be read
DEF ssp_stat_read 0y00000100b ; current buss cycle is a read
DEF ssp_stat_start 0y00001000b ; IIC start bit last received
DEF ssp_stat_stop 0y00010000b ; IIC stop bit last received
DEF ssp_stat_data 0y00100000b ; data byte in register (not address)

DEF sci_txstat_bit9 0y00000001b ; 9th bit to transmit
DEF sci_txstat_empty 0y00000010b ; indicates transmit shift reg empty
DEF sci_txstat_baudr 0y00000100b ; baud divisor 0=Fosc/64, 1=Fosc/16
DEF sci_txstat_sync 0y00010000b ; indicates synch mode to be used
DEF sci_txstat_enabl 0y00100000b ; enable transmission
DEF sci_txstat_nine 0y01000000b ; send 9 bits
DEF sci_txstat_clk 0y10000000b ; clock source 0=ext, 1=internal

DEF sci_rxstat_bit9 0y00000001b ; 9th bit received
DEF sci_rxstat_over 0y00000010b ; indicates an overrun error
DEF sci_rxstat_frame 0y00001000b ; indicates a framing error
DEF sci_rxstat_cenbl 0y00010000b ; enable or continuous receive enable
DEF sci_rxstat_singl 0y00100000b ; for sync mode receive single byte
DEF sci_rxstat_nine 0y01000000b ; receive 9 bits
DEF sci_rxstat_port 0y10000000b ; configures I/O pins for SCI (A6, A7)

FBasic TICkit 5 Standard Library

Protean Logic Inc. 141

DEF ccp_off 0y00000000b
DEF ccp_capt_fall 0y00000100b
DEF ccp_capt_rise 0y00000101b
DEF ccp_capt_rise4 0y00000110b
DEF ccp_capt_rise16 0y00000111b
DEF ccp_comp_set 0y00001000b
DEF ccp_comp_clear 0y00001001b
DEF ccp_comp_int 0y00001010b
DEF ccp_comp_event 0y00001011b ; reset timer1 for CCP1
 ; start A/D for CCP2 (74 only)
DEF ccp_pwm 0y00001100b
DEF ccp_pwm_bit0 0y00010000b
DEF ccp_pwm_bit1 0y00100000b

DEF int_con_periphe 0y01000000b ; all other peripherals enable
DEF int_con_tmr0e 0y00100000b ; timer 0 overflow enable
DEF int_con_pind0e 0y00010000b ; pin_d0 interrupt enable
DEF int_con_portde 0y00001000b ; data port change enable
DEF int_con_tmr0f 0y00000100b ; timer 0 overflow flag
DEF int_con_pind0f 0y00000010b ; pin_d0 interrupt flag
DEF int_con_portdf 0y00000001b ; data port change flag

DEF int_flag2_ccp2 0y00000001b ; flag for CCP1 sources (compare&capture)

DEF int_flag_psp 0y10000000b ; flag for slave parallel port
DEF int_flag_ad 0y01000000b ; flag for A to D converter
DEF int_flag_rx 0y00100000b ; flag for RS232 receiver
DEF int_flag_tx 0y00010000b ; flag for RS232 transmitter
DEF int_flag_ssp 0y00001000b ; flag for synchronys serial (IIC) port
DEF int_flag_ccp1 0y00000100b ; flag for CCP1 sources (compare&capture)
DEF int_flag_tmr2 0y00000010b ; flag for timer2 roll-over
DEF int_flag_tmr1 0y00000001b ; flag for timer1 roll-over

IFDEF tic63x_i DEF play_11025 1b ; 92+3(X-1) us/spl (90.7, act 92us)
IFDEF tic63x_i DEF play_8000 12b ; 92+3(X-1) us/spl (125, act 125us)
IFNDEF tic63x_i DEF play_11025 94b ; 175+3(X-1) cyc/spl (453.5 act 454cyc)
IFNDEF tic63x_i DEF play_8000 151b ; 175+3(X-1) cyc/spl (625.0 act 625cyc)

DEF x10_a 0y01100000b
DEF x10_b 0y01110000b
DEF x10_c 0y01000000b
DEF x10_d 0y01010000b
DEF x10_e 0y10000000b
DEF x10_f 0y10010000b
DEF x10_g 0y10100000b
DEF x10_h 0y10110000b
DEF x10_i 0y11100000b
DEF x10_j 0y11110000b
DEF x10_k 0y11000000b
DEF x10_l 0y11010000b
DEF x10_m 0y00000000b
DEF x10_n 0y00010000b
DEF x10_o 0y00100000b
DEF x10_p 0y00110000b

5 Standard Library FBasic TICkit

142 Protean Logic Inc.

DEF x10_1 0y00000110b
DEF x10_2 0y00000111b
DEF x10_3 0y00000100b
DEF x10_4 0y00000101b
DEF x10_5 0y00001000b
DEF x10_6 0y00001001b
DEF x10_7 0y00001010b
DEF x10_8 0y00001011b
DEF x10_9 0y00001110b
DEF x10_10 0y00001111b
DEF x10_11 0y00001100b
DEF x10_12 0y00001101b
DEF x10_13 0y00000000b
DEF x10_14 0y00000001b
DEF x10_15 0y00000010b
DEF x10_16 0y00000011b

DEF x10_alloff 0y00000000b
DEF x10_lightson 0y00001000b
DEF x10_on 0y00000100b
DEF x10_off 0y00001100b
DEF x10_dim 0y00000010b
DEF x10_bright 0y00001010b
DEF x10_lightsoff 0y00000110b
DEF x10_extcode 0y00001110b
DEF x10_hailreq 0y00000001b
DEF x10_hailack 0y00001001b
DEF x10_predim 0y00000101b
DEF x10_prebright 0y00001101b
DEF x10_extdata 0y00000011b
DEF x10_staton 0y00001011b
DEF x10_statoff 0y00000111b
DEF x10_statreq 0y00001111b

DEF x10_rec_comm 0y1000000b ; set if received packet is a command
DEF x10_rec_timeout 0y01000000b; set if no packet before timeout
DEF x10_rec_extrah 0y00100000b ; set if header detected within packet
DEF x10_rec_ptrunc 0y00010000b ; set if signals ends prematurely

DEF rtc_enable 0y10000000b ; internal timer enable
DEF rtc_intm 0y01000000b ; interval timer interrupt mask
DEF rtc_intf 0y00100000b ; interval timer interrupt pending
DEF rtc_period 0y00010000b ; interval timer period has elapsed
DEF rtc_rollover 0y00001000b ; timer (seconds) has rolled over
DEF float_carry 0y00000100b ; only has internal meaning
DEF float_under 0y00000010b ; a floating point underflow
DEF float_over 0y00000001b ; a floating point overflow
DEF float_div0 0y00000011b ; a div0 if both set by one operation

DEF rot_1change 0y00000010b ; Rotary Sensor 1 changed
DEF rot_2change 0y00001000b ; Rotary Sensor 2 changed
DEF rot_1rollover 0y00010000b ; Rotary Sensor 1 rolled over
DEF rot_1rollunder 0y00100000b ; Rotary Sensor 1 rolled under
DEF rot_2rollover 0y01000000b ; Rotary Sensor 2 rolled over
DEF rot_2rollunder 0y10000000b ; Rotary Sensor 2 rolled under

FBasic TICkit 5 Standard Library

Protean Logic Inc. 143

.

DEF scanf_end 0xc000w
DEF scanf_snumb 0x8f00w
DEF scanf_rnumb 0x8700w
DEF scanf_jnumb 0x8300w
DEF scanf_wstr 0x8100w
DEF scanf_str 0x8000w
DEF scanf_msnumb 0x4f00w
DEF scanf_mrnumb 0x4700w
DEF scanf_mjnumb 0x4300w
DEF scanf_mwstr 0x4100w
DEF scanf_mstr 0x4000w
DEF scanf_isnumb 0x0f00w
DEF scanf_irnumb 0x0700w
DEF scanf_ijnumb 0x0300w
DEF scanf_iwstr 0x0100w
DEF scanf_istr 0x0000w
DEF scanf_xerr 0xd000w
DEF scanf_ierr 0xe000w
DEF scanf_none 0xf100w

; Bit values for A/D control 0 register
DEF a2d_osc2 0y00000000b
DEF a2d_osc8 0y01000000b
DEF a2d_osc32 0y10000000b
DEF a2d_oscrc 0y11000000b
DEF a2d_chanm 0y00111000b
DEF a2d_chan0 0y00000000b
DEF a2d_chan1 0y00001000b
DEF a2d_chan2 0y00010000b
DEF a2d_chan3 0y00011000b
DEF a2d_busy 0y00000100b
DEF a2d_start 0y00000100b
DEF a2d_on 0y00000001b

; Pin assignments for A/D are as follows. Any other configuration halts
; TICkit operation as EEprom interface lines will use analog functions
; Values are for A/D control 1 register
DEF a2d_none 0y00000110b ; all vport (AD) pins are digital
DEF a2d_013 0y00000100b ; V0, V1, and V3 are analog inputs
DEF a2d_013r 0y00000010b ; V0, V1 are analog in, V3 is voltage ref

5 Standard Library FBasic TICkit

144 Protean Logic Inc.

6 The TICkit IDE Program
6.1 What is the TICkit IDE?
The TICkit IDE is an Integrated Development Environment. This means that it is a single program with all the tools
necessary to write, compile, and debug programs for TICkit devices. Using a PC running Windows 95 or later operating
systems, you use the TICkit IDE to develop your program for the TICkit device. Then, using the download functions of
the IDE, you place the developed program into the TICkit. At this point the TICkit can execute the program without any
need of the PC. However, you can use the IDE's powerful debugging capabilities to monitor program operation, inspect
the values of variables, and use the IDE console as an output device for the TICkit. Once you are satisfied with the
operation of the TICkit program, the TICkit can be removed from the download cable and placed into operation free of
the PC. The program is remembered by the TICkit even when power is removed, so the TICkit is now operating as a
completely independent small computer.

6.2 The Main TICkit IDE Edit Window

The first window you see after starting the TICkit IDE is refered to as the "edit window" and is pictured above. This
window is sizeable and contains two distinct areas that can be resized as well. The left side is refered to as the "Primary
Source" edit area. This area is used to prepare the main file of the program. Typically, this file contains the main body of
the program including the function "main" which is the starting point for FBasic programs. The right side of the edit
window is refered to as the "Secondary Source" edit area. This area has 8 notebook tabs for editing up to 8 files at once.
Many programs do not require secondary source files at all (SSFs) but often programs can be developed better or
maintained easier when a program is broken into different files. For example, you may have a large array of bytes which
are samples for the audio playback to say "hello". If you place this array initialization into a secondary source file named
"hello.inc", not only will your primary file be much smaller and easier to view, any new program can refer to this data
simply by using the following line in the top part of the program:

INCLUDE hello.inc

You may also wish to put functions for specific peripherals into secondary source files called library files. For example,
the release disk contains a file called "ltc1298.lib". This library file has prewritten functions for controlling a Linear
Technologies 1298 12bit A/D converter. Any program needing to control such a device and simply add the following line
to the top of the program and refer to the functions later:

FBasic TICkit 6 The TICkit IDE Program

Protean Logic Inc. 145

LIBRARY ltc1298.lib

You may also want to use a secondary source edit area for looking at other programs. Since the primary and secondary
edit areas are side by side, you can page through both edit areas comparing source code line by line to find and examine
differences.

6.3 The Main Edit Window Menu
The menu selections for the maid edit window provide all the options necessary for editing and maintaining files for a
program. Also, the menu contains access to other tools, and areas of the program necessary for setting up the IDE,
compiling programs, and debugging programs, and using utility programs.

The first three menu items on this window (File, Print, Edit) are used to prepare your program. The Run menu item is
used to compile and download programs into a TICkit device. The Options menu selection controls the behavior of the
IDE. The Help selection provides access to the complete user manual for the TICkit as well as revision information and
release information.

The File menu item pulls down selections used to create, open, save or close files in the IDE. Primary program files
determine the file names of the token and symbol files. The selections are:

1. New Primary: Creates a skeleton FBasic program in the Primary edit area. Use when writing a program from
scratch.

2. Open Primary: Is used to open an existing program file. Use this to view or modify a program.
3. Save Primary: Saves the program currently in the Primary edit area to the file.
4. Save Primary As: Saves the program currently in the Primary edit area to a different file name.
5. Close Primary: Clears the Primary edit area and discards any changes.
6. New Secondary: Creates a skeleton of an FBasic library program in the selected Secondary Source area.
7. Open Secondary: Is used to open an existing program file in the selected Secondary Source edit area.
8. Save Secondary: Saves the program currently in the selected Secondary Source edit area to the file.
9. Save Secondary As: Save the program currently in the selected Secondary Source edit area to a different file.

10. Close Secondary: Clears the selected Secondary Source edit area and discards any changes.
11. Save All: Saves all edit areas that have been modified to their respective files. If an edit area is new and not

associated with any file name, the user will be prompted for a file name.
12. Close All: Closes all edit areas, and discards all changes.
13. Exit: Closes all edit areas and exits the TICkit IDE.

The Print menu item pulls down selections used to print one or all edit areas and to configure the printer. The selections
are:

1. Print Primary: Prints the text of the Primary edit area.
2. Print Secondary: Prints the text of the selected Secondary Source area.
3. Print All: Prints the text of both the Primary and all Secondary edit areas.
4. Printer Setup: Selects the printer to use and allows selection of printer options.

The Edit menu item pulls down selections used to manipulate the text of an edit area. The selections are:

1. Undo: Restores the edit area to the condition before the last text change.
2. Cut: Cuts text from the selected edit area and places it in the clipboard.
3. Copy: Copies text from the selected edit area and places it in the clipboard.
4. Paste: Places the text in the clipboard into the selected edit area at the point of the cursor.
5. Delete: Removes the text from the selected edit area.
6. Goto Line: Displays the position of the cursor in the selected edit area and optionally moves the cursor to another

line.

6 The TICkit IDE Program FBasic TICkit

146 Protean Logic Inc.

7. Find: Searches the selected edit area for a pattern of text.
8. Replace: Searches the selected edit area for a pattern of text, and replaces the text with the specified replacement

pattern. Replace All, will interactively prompt for replacement, or not.

The Run menu item pulls down selections used to run your program on a TICkit device. The selections are:

1. Compile and Debug: Compiles the program in the Primary edit area, and, provided no errors are found, starts a
debug dialog. If errors are revealed, they are reported, and you are returned to the main IDE edit window.

2. Debug Only: Starts the debug dialog window used for downloading and debugging TICkit programs. Use this
selection when working with prewritten programs. Use the Download From File option of the debug dialog for
distributed token files.

3. Compile Only: Compiles the program in the Primary edit area. Any errors are reported and the user is always
returned to the main edit window.

The Tools menu item pulls down selections of utility modules required for special features of the TICkit. The Selections
area:

1. WAV to INC Conversion: This utility converts a standard WAV format audio file into data arrays in one or more
secondary source edit areas. Typically, these arrays are saved in INC files (include) and are used with the audio
playback functions of the TICkit. NOTE: This utility can only convert one channel, 8 bit, and PCM files sampled at
11025 or 8000 samples per second.

2. Serial Terminal: Not implemented in this release.

The Options menu item opens a dialog for setting up the COM port (serial port) and protocol conventions of the TICkit
you are using. Normally, the protocol is determined automatically, however older token files or older TICkits may require
manual protocol settings. The Revision prompting and Automatic Version Control features of the IDE are not
implemented in this release.

The Help menu contains selections of documents meant to be helpful. What you are reading is one of them. The TICkit
Manual, DOS Tools Manual, and Release notes are all Adobe's PDF format documents. This allows you to print them out
in a formatted maner, add sticky notes to them for your reference, and search the documents for words or phrases.
Adobe's PDF viewer is freely distributed and a copy of the program is available on the TICkit release disk if you need to
install it on your computer. Because the Manual is in electronic form, you can actually highlight sample code, copy it to
the clipboard, and paste it into the TICkit IDE edit areas to experiment with the example code. The help selections are:

1. About: Displays information about this release of the TICkit IDE.
2. TICkit Manual: Provides information about the TICkit IDE, the TICkit hardware, the FBasic language, etc.
3. DOS Tools Manual: Provides information about the older DOS development tools.
4. Release Notes: Provides information specific to a release. May include errata, or new feature documentation.
5. Intall Acrobat 4.0: Provides instruction for installating Adobe's Acrobat reader.
6. Using This Program: An abreviated explination of the edit window menu options

6.4 Using the Pop-Up Menus

In addition to the main edit window menus at the top of the window, you may click on the right button of your mouse
when the mouse pointer is over an edit area to pup up another menu. This shorter menu provides options specific to the
edit area and may be more intuative to use.

Note: When use Find or Replace or Goto Line menu functions, the position of the cursor is improtant. You must make the
edit area active by clicking on it and place the cursor at the beginning of the search area.

FBasic TICkit 6 The TICkit IDE Program

Protean Logic Inc. 147

6.5 Setting the Options

Shown above is the options window. This window is used to designate the serial port that the TICkit device connects to.
It also can be used to force a protocol speed or register format. Normally, the speed and format designation is specified in
the token file for a program, but you may receive a token file for a project that was compiled under an older FBasic
compiler. When this happens, you will need to set the protocol parameters manually.

You will also notice some check boxes in the options window. These are features not yet implemented in the TICkit IDE,
but will eventually aid you in commenting your program and breaking versions for easy version roll-back.

6.6 Compiling and Debugging
Once your program is written, use the RUN menu item to compiled and/or debug the program. The Compile window is
shown below. This the area for the compiler to report errors. When the compilation is complete, note any errors so you
can fix them, then click Okay to return to the edit window or to enter the Debug Dialog window.

6 The TICkit IDE Program FBasic TICkit

148 Protean Logic Inc.

Once your program has compiled correctly, you can use the Debug function to download the program into a TICkit
device. The next chapter deals with the details of downloading a program and using the debug window to test your
program.

6.7 The WAV to INC conversion utility
The TICkit 63 and 74 have audio playback capabilities. To use audio playback, you will need to create an array of bytes
initialized with all the audio samples of the playback fragment. The TICkit IDE has a utility for converting standard audio
WAV format files into FBasic source code as initialized arrays of bytes. First you need a WAV file to convert you can
use any of a number of audio recording programs to generate these files. The most common is the "Sound Recorder"
program of Windows 95/98/2000. This program is usually in the Entertainment section of Accessories under Program
Files. If you cannot locate the program on your system, use the Windows Setup Tab of Add/Remove Programs under
Control Panel under Settings to make sure the Sound Recorder program was installed. Record your audio sample, or save
an existing sample as a single channel, 8bit, PCM format file. Sampling at 11025 or 8000 samples per second yeild the
best playback results.

Once your WAV file has been generated, Click the WAV to INC selection under Tools in the TICkit IDE. Select the
WAV file you want to convert then specify the name of the array to contain the data and a symbolic name to be used for
the size of this array. Lastly, specify a secondary source edit area to receive the source code. Click convert and the
program source is created. The secondary source can then be saved as an include file or treated like any other FBasic
source code.

6.8 TICkit IDE Program Distribution
Protean Logic Inc. makes the TICkit IDE available for immediate download from the protean web site. Also, you may
distribute copies of the program to others who will need to download token files or who want to evaluate the TICkit IDE.
The TICkit IDE is NOT free or public domain however. Once you or any person you distribute the program to, starts
developing software for the TICkit and utilizes the TICkit IDE for something beyond evaluation of program compilation
and download, the TICkit IDE program should be registered. This provides the revenue necessary for Protean Logic to
continue to improve the IDE and assures that the TICkit product will be supported in the future.

FBasic TICkit 6 The TICkit IDE Program

Protean Logic Inc. 149

7 The TICkit IDE Debug Window
7.1 The Elements of Debugging and the Debug Window

The Debug window consists of three areas. The top area is the Console area and is used by TICkit programs as an output
device. The bottom left area is the command box or area and provides a history of commands as well as displays token
and source line information as the program progresses. The command box is also used to display status and error
messages about the debug process.

NOTE: The protocol used to communicate between the PC and the TICkit is relatively complex and is time
sensitive. When the PC running the debug program is busy doing other things, or if you enter the debug
window while the TICkit is running, you may likely see "Illegal Protocol Character" messages. This is normal
and presents no problem as the Debug program will re-synchronize with the TICkit automatically.

The box area on the bottom left is the watch point area and is used to display information about variables inside the
TICkit as the program progresses.

Debugging involves various methods of using the information provided by the debug window to determine if a TICkit
program is running as intended. If the program is not behaving as intended, the debug window can be used in various
ways to determine exactly where the errors in logic are within a program.

Debugging methods include simple console I/O methods where the program sends messages to the debug console when it
reaches crucial points in execution. The console might also be used as a means of altering program execution or pausing
execution while the user is prompted for a valule.

More sophisticated debug methods can use watch points and break points to cause the program to execute slower and
constantly update key status information as the program runs. The user may also wish to step through sections of a
program one function, source line, or token at a time to see how the program operates. At any point, the user can examine
memory or variable contents and alter the contents if necessary.

7 The TICkit IDE Debug Window FBasic TICkit

150 Protean Logic Inc.

So, debugging consists of a lot more than just downloading and executing a program. The time it takes to make even
complex programs function properly can be greatly speeded by clever use of the debugging capabilities of the debug
window.

7.2 The Debug Window Menu Selections
The Program menu item pulls down selections used to download a program to a TICkit or to compare the contents of a
TICkit with a program to verify its version and accuracy. The selections are:

1. Download Current: Downloads the program’s tokens currently loaded in the IDE into the TICkit device.
2. Compare Current: Compares the program’s tokens currently loaded in the IDE with the TICkit device’s EEprom

contents
3. Download from File: Asks for a program token file, loads the tokens into the IDE, then downloads the tokens into

the TICkit Device. Use this download option when you are using a TICkit with prewritten code and you only have
the program’s token file distributed to you.

4. Compare with File: Asks for a program token file, loads the tokens into the IDE, then compares the tokens
with those inside the TICkit device’s EEprom.

The Step menu item instructs the TICkit to execute exactly one line from your FBasic program.

The Pass menu item instructs the TICkit to execute one line from your FBasic program. If the current line is a call to
another FBasic function, the entire function is executed.

The Trace menu item instructs the TICkit to execute exactly one token of your FBasic program. There are usually many
tokens in a single FBasic program line, so this low level of execution shows exactly how the stack and memory usage
change as a single program line progresses.

The Run menu item pulls down selections used to start or manage program execution within the TICkit device. The
selections are:

1. Execute: Execute the program in the TICkit at full speed. Suspend debug protocol as necessary.
2. Monitor Verbose: Execute the program in the TICkit, but maintain the debug protocol. All source lines and watch

point information is displayed as the program progresses.
3. Monitor Silent: Execute the program in the TICkit, but maintain the debug protocol. Source lines and watch point

information is NOT displayed when monitoring silently.
4. Monitor Stop (Zap): Halts program execution if the TICkit is running in a monitor mode. Execution can resume

from the point of the halt.

The Reset menu item instructs the TICkit device to internally reset. If you have a deluxe download cable connected, this
menu item will also externally reset the TICkit device in the same way that pressing the reset button will. If you have the
standard download cable, this menu item will have no effect unless the protocol is connected.

The Watch menu item opens a window to maintain the selection of watch points. Watch points are references to
variables used by the TICkit’s FBasic program. When a watch point has been set, every Step, Pass, Trace, or Monitor
command will display the variables contents in the watch point area.

The Breaks menu item opens a window to maintain break points. Break points are references to places in the TICkit’s
FBasic program. When the TICkit is running in Monitor mode, execution will stop when a break point is encountered.

The Values menu item opens a window that allows individual variables or memory locations to be viewed and changed
inside the TICkit device.

The Help menu item displays an abreviated explanation of the debug menu items.

The Quit menu item closes the debug connection and debug dialog window. If a program is contained inside the TICkit,
it will begin executing at full speed once the debug connection is closed.

FBasic TICkit 7 The TICkit IDE Debug Window

Protean Logic Inc. 151

7.3 The Break Point Selection Window

Use the break point selection window to pick an execution stop point from the lines of your program . Once set, a break
piont will interrupt any monitored execution of the TICkit. The selection window is shown above. Use the up and down
arrows to move the lines of your program accross the selection window, then click on the line you want to be the break
point. When executing, the TICkit will stop immediately before executing the line selected as a break point. The TICkit
IDE allows up to 10 breakpoints at a time.

NOTE: A break point will not suspend execution if the TICkit has suspended the debug link. Therefor, when you want to
execute up to a break point, choose the MONITOR VERBOSE or MONITOR SILENT run methods.

7 The TICkit IDE Debug Window FBasic TICkit

152 Protean Logic Inc.

7.4 The Watch Point Selection Window

The window shown above is used to select watch points. Watch points are simply named variables that display in the
watch point area of the debug dialog. This release of the TICkit IDE only allows watch points on Global Variables. Click
one of the SELECT buttons to pull up the Variable Selection List. The Variable Selection List will display all the Global
variables in a program. Click on the variable to make it a watch point. Up to 10 watch points are allowed at one time in
the TICkit IDE.

FBasic TICkit 7 The TICkit IDE Debug Window

Protean Logic Inc. 153

7.5 Using the Value Examine and Modify Window

The window shown above is used to examine and modify variables or memory locations. Type in the name, decimal
address, or hexidecimal address of the variable or memory you want to examine. If you type a name or use the SELECT
button to select a variable, the SIZE field will automatically adjust to the variable's size. If using a memory address, use
the SIZE list box to select the appropriate variable size. Click the EXAMINE button to read the specified location and
size from the TICkit Device's memory. The value will display in the field labeled, "Current Value". If you want to modify
the value, type the new value in decimal, hexidecimal or floating point format in the field labeled, "New Value" then
press the CHANGE button. This dialog is modeless, so you can keep the window active while the program executes and
while you do other things in the TICkit IDE. This allows you to repeatedly examine the same memory without having to
re-enter the location or size.

This window only examines RAM address locations, not EEprom locations. To examine EEprom locations, a small
FBasic program is required. This limitation was imposed to prevent easy copying of commercial trade secret applications.

7.6 Debug Strategies
There are many different strategies for testing and debugging programs. Simple rules to follow are:

1. Do not change very many things in the program at once.
2. Make copies of your program whenever operational milestones are acheived.
3. Use the tools to diagnose the problem. (In other words, after looking at source code with no clear indication of a

problem, try to discover clues as the program executes).
4. Monitor Stack Usage.
5. Check to see if any warnings generated by the compiler might be related to a problem being observed.
6. Re-use code that is known to work when possible.
7. Use symbolic names for values. This enables easy find and replace modifications, and prevents accidental scews of

assumptions.
You will likely come up with some more rules of your own. The TICkit devices can support very large programs.
Programs which can easily exceed a programmers ability to keep all the information inside his or her head. Therefore, use
the debugging tools and heavily document code when programs start getting larger. Also, use the encapsulation and

7 The TICkit IDE Debug Window FBasic TICkit

154 Protean Logic Inc.

blocking capabilities of FBasic to keep code blocks small and concise in function. By using functions and LOCAL
values, accidental re-use of variables is completely eliminated and your functions can be tested in smaller chunks.

FBasic TICkit 7 The TICkit IDE Debug Window

Protean Logic 155

Pin 3 of the Console computer's 9 pin serial port is a transmit pin. When the Console is not transmitting data, this pin will
be low (-9 to -12 volts). This is an RS232 idle or stop bit state. The 4.7K ohm resistor acts as a pull down resistor to
cause Pin 2 of the Console's port to see an idle state, also. Pin 2 is the receive line for the console. The + pin of the DL
port on the TICkit will also see the -9 volt signal, but will shunt it to ground via the 330 ohm current limiting resistor.
Either the TICkit or the Console can raise the voltage on the data line by simply transmitting data. When the TICkit
transmits data, a voltage divider is formed between the PIC's output and the output of the Console's RS232 output.
Because the leg of the divider to the Console's output has a much greater resistance, the PIC's output has priority over the
Console's output.

When using this type of bi-directional data cable, The TICkit must be programmed to invert the RS232 signal. The
TICkit will use an open source output causing low outputs to be "high impedance", while high outputs will be
approximately 5 volts.

Appendix A: Circuits
A.1 Download Cable(s)

Appendix A: Circuits FBasic TICkit

156 Protean Logic Inc.

A.2 Multi-drop connection of multiple TICkits.

+++

TICkit #1 TICkit #2 TICkit #3

Isolate power supplies to eliminate ground loop difficulties.
Each resistor = 1/2 line impedance. Try 50 ohms.

Multiple TICkits can be connected together using a shared wire configuration. By matching the pull down resistance to
the characteristic impedance of the transmission line, long lengths can separate TICkits while maintaining good data
connection. An example of this type of connection is shown above. At 9600 baud, reliable communication can be
expected up to 1000 feet. Longer lengths can be acheived using lower baud rates and/or better terminations.

This type of connection also requires that the RS232 configuration use the inverted option. The user can adopt a protocol
that uses framing errors to identify message addresses. By enabling stop bit interrogation, the TICkit RS232 serial library
can be made to generate, as well as detect, framing errors. Using this sort of "9 bit" technique allows message headers to
contain a special byte with a framing error to distinguish the header from the data stream.

The TICkit 62 has a special function just for doing this type of network communication called rs_recblock. The example
below illustrates the program lines necessary for this type of communication.

; Sending program for a TICkit 62

=(index, 0b)
rs_break() ; send a break level
rs_send(3b) ; send the node address. In this case,
 ; send to node 3 (note node 0 should not
 ; be used as this may be implemented as
 ; a broadcast to all nodes address in
 ; the future.
REP
 rs_send(buffer[index])
 ; data to be sent is containded in the
 ; array buffer with 10 bytes
 ++(index)
UNTIL >=(index, 10b)

; receiving program fragment
WHILE rs_recblock(0b, rs_cont_brk, 3b, buffer, 10b)
 ; the above will continue to loop until a 10 byte
 ; block is received without errors addressed to
 ; node 3. The resulting data will reside in buffer
 ; for use by the rest of the program.
LOOP

FBasic TICkit Appendix A: Circuits

Protean Logic Inc. 157

A.3 The RC measurement Circuit

TICkit

Ctest
+

Rtest

Rcharge

Rlimit
Gnd

I/O pin

Rinternal

This circuit, coupled with the rc_measure function in the TICkit standard library, will measure either a capacitor, a
resistor, or both using a timing method. Rcharge and Rlimit resistors may be omitted, but are useful for discussion
purposes to preventing boundary problems. As a rule of thumb, the product of Ctest multiplied by the sum of Rtest and
Rlimit should equal one where the value of Ctest is in farads, and the values of Rtest and Rlimit are in ohms. Therefore, a
value for Ctest of 10uf, a 100k ohm value for Rtest and a value of 0 for Rlimit will produce approximately a 16 bit count
range. Accuracy with this measurement method can vary from tenths of percents at high R and C values to 5 percent for
low R and C values. For this reason, using an Rlimit resistor of 1k ohms can generate higher accuracy. Any count offset
introduced as a result of Rlimit can be compensated for by subtracting a constant from the resulting counts.

The RC measure function works by assuming that the capacitor is mostly discharged. This assumption will be true
provided that the pin was either held low for a short period, or if an RC measurement was the last I/O function on this.
The routine then charges the capacitor by internally connecting the pin to a high logic level. The capacitor will charge
rapidly with only the internal resistance and any Rcharge resistance to slow its rate of charge. The routine monitors the
voltage on the output pin approximately every 10us. When the routine sees a high level voltage, the pin is held high for
an additional 768us. The pin is switched to an input and the time until the voltage on the capacitor falls to a low level is
the value returned as the RC measurement. The count is fairly linear with respect to the Rtest and Ctest values, however,
there are sources of error.

First, the initial threshold is only accurate to the RC measure routines ability to see the instant the capacitor is charged to
a high level. Because the pin is only sampled every 10us, there is a window of error. By increasing the Rcharge resistance
or by using a larger capacitor, the effect of this inaccuracy can be minimized. The side effect of increasing these values is
that it takes longer for the entire measurement to be performed. Also, if the charging time is longer than .65535 seconds,
a 0 will be returned from the function.

Another source of error is caused by the divider formed between the Rtest and the Rinternal. If Rtest is very low, the
charging voltage may actually be less than the high threshold voltage. This will prevent the Capacitor from charging to
the high threshold. When this happens, the entire measurement takes too long, and 0 is returned. By using an Rlimit of
approx. 1K ohms, this possibility is minimized.

Finally, the Rinternal value and the threshold for a high or low level on the pin is not precise. The PIC was not designed
to be a comparitor, so there will be shifts due to environmental conditions. The RC measurement routine is useful for
qualitative results, but the user must exercise caution to ensure the required accuracy of data when using this routine.

Appendix A: Circuits FBasic TICkit

158 Protean Logic Inc.

Examples:

; This program repeatedly measures the RC network and displays
; the result on the console. In this example a 10K pot was
; used with a 10uf capacitor.

DEF tic62_a
LIB fbasic.lib

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 REP
 con_out(rc_measure(pin_a0))
 con_out_char('\r')
 con_out_char('\l')
 delay(100)
 LOOP
ENDFUN

FBasic TICkit Appendix A: Circuits

Protean Logic Inc. 159

Appendix B: TICkit 57 Hardware
B.1 FBASIC TICkit57 schematic diagram

This diagram is the schematic for a 20MHz, 64kbit EEprom TICkit 57. The crystal can be either a 4MHz or a 20MHz,
depending on which interpreter program is contained in the preprogrammed PIC. The EEproms may be either 2Kbyte
(24LC16) or 8Kbyte (24C65) versions, also depending on the program in the PIC. For the 8Kbyte versions, up to 8
EEprom devices can share the same two lines (SCL and SDA) from the PIC. The combination of the A0, A1, and A2
EEprom select lines determine the addressing of the EEproms. For a single EEprom configuration, all lines A0, A1, and
A2 should be grounded, as shown.

Support for two EEproms addressed in blocks 0 and 1 is provided and each EEprom may be individually write protected.

Appendix B: TICkit 57 Hardware FBasic TICkit

160 Protean Logic Inc.

.

B.2 TICkit57 Specifications
Physical Dimensions: Overall; 2.5 x 2.5 inches,
Prototype area; 1.0 x 2.5 inches
Power Supply: Input; at least 5.7 volts @ 50ma Output 5.0 volts @ 900ma
Input/output: I/O pins can sink up to 40ma each or 150ma total. I/O pins can source 50ma
total.

See the Microchip™ PIC databook for I/O specifications. All PIC16C57 I/O parameters
apply to TICkit I/O lines. 4MHz versions use less power and can operate on a lower voltage.

B.3 Component Placement Diagram

The above diagram shows the locations of components and pins for the TICkit. One important point to notice, is that the
data group of outputs is numbered in the opposite order from the address group pins. This is simply a placement issue,
but there is a possibility of confusion when wiring components to the TICkit.

Another point to notice is that the power and download connections are non-polarized two pin connectors. The ground
pin is always to the left, but the user must exercise caution when applying power or when connecting the Download cable
to ensure proper connection polarity. Reverse polarity will not damage the TICkit however - DO NOT PLUG THE
POWER INTO THE DOWNLOAD PORT - this will destroy the TICkit interpreter IC.

Fbasic TICkit Appendix B: TICkit 57

Protean Logic Inc. 161

Power Connection
(Gnd to left) Console/Downloader

Connection
(Gnd to left)

Appendix C: TICkit 62 Hardware
C.1 TICkit 62 Schematic (40 pin module)

The TICkit 62 is available as a single IC or as a 40 pin module. The 40 pin module is a small printed circuit board with a
pin pattern and overall size that matches the standard size of a 40 pin DIP. The schematic shown above is the circuit for
the module. Notice that some of the top and some of the bottom pins have no connections. Components D1, R4, and C3
form a basic reset circuit which ensures that power is stable before the T62 processor IC begins to run. R3 pulls the /IRQ
input high to eliminate any false Interrupts. Interrupting devices connected to this pin should all be open collector (open
Drain) to allow wire or-ing of the inputs. R1 and R2 pull the I2C lines high. If you will be using these lines to connect to
other I2C devices which are 24 inches or more away from the TICkit, pull the lines stronger with resistors as small as
1.2K ohms.

Appendix C: TICkit 62 Hardware FBasic TICkit

162 Protean Logic Inc.

C.2 TICkit 62 Project Board Schematic

The T62-PROJ project board provides a means for wiring up simple TICkit 62 based projects. A 40 pin IC socket
accepts the TICkit 62 module. Additionally, a +5 vdc regulated power supply is implemented on the board. Simply
connect any DC source between 5.6 and 18 vdc into the coaxial power connector (center -). Notice that input voltages
greater than 6 volts will limit the power output of the supply because of all the excess voltage the regulator needs to drop.
This will overheat the regulator if a larger current is being drawn and cause the regulator to automatically shut itself off.

A socket for an additional EEprom is supplied which has already been strapped for block 001 (the second 8k block in the
TICkit 62's address space). There is also a foil pattern for an Xtender or a second TICkit 62 on the board. Simply solder
in the Crystal, IC socket, and capacitors. I2C and other connections will have to be hand wired to complete an Xtender
installation.

Appendix C: TICkit 62 Hardware FBasic TICkit

Protean Logic Inc. 163

C.3 The TICkit 62 Module and IC pin diagrams

The schematic diagrams above show the internal connections are for both the 40 pin TICkit 62 module (on the left) and
the TICkit 62 interpreter IC (on the right). The interpreter IC is available in both a 28 pin PDIP and 28 pin SOIC
package.

C.4 Making your own layout using the 28 pin IC
Using the IC alone is not recommended for your first experience the TICkit. However, for production runs, or for smaller
and lighter circuits, you will probably want to use the TICkit interpreter IC instead of the module. There are few special
considerations when using the IC alone but the following list will make sure your project goes off without difficulty.

1. Connect both of the IC's ground pins to ground. On the module, only on pin needed to be grounded, but the IC
needs both pins to be grounded.

2. Keep the Oscillator wire runs as short as possible. Using a crystal time base is suggested over a resonator to
ensure that communication baud rates are as close as possible to the official value. Variations between the
sending and receiving communication time bases are sometimes large enough to cause communications errors
due to the way in which the async start bit is detected. Even a resonator with an error as small as 1% may result
in communication if the sending device has a 1% time base error, and the baud rates are high (9600 and above).

3. The reset circuit used in the module is probably more elaborate than required by most applications. However,
the reset pin should never be connected directly to Vdd. A resistor of at least 10K should be used to prevent the
IC from sensing a reset voltage greater than Vdd which is the ICs internal programming condition.

4. The pull-up resistor for the EEprom bus (an I2C buss) need to be matched to the overall length of the buss. If the
bus length is quite long, pull up resistors should be used at both physical ends of the bus. The 22K ohm resistors
used by the module are sufficiently low for lengths up to approximately 24 inches. The pull-up resistance should
not be less than 2K. For long EEprom bus lengths some experimentation should be done before a PCB is layed
out to ensure that the communications are reliable.

5. The Microchip PIC16Cxx ICs are very resistant to static discharge, but the clampling diodes used for this
protection can create problems if your circuit will ever be partially powered down. Because all I/O lines are
diode clamped to both Vss and Vdd, any voltage which remains on an I/O line may inadvertantly power the IC.
Series resistors or other similar measures may be used to prevent the Interpreter IC from running or drawing
power in a power off situation.

6. The 24C65 EEproms used by the TICkit to store the user's program and data generates its own programming
voltages and timing. This is convenient from a development point of view, but can be a source of problem when
you do not want your program to accidentally be written over. The TICkit has solved this problem by supplying
power to the 24C65 from one of its I/O pins. The forces the EEprom into reset during power up and down.
Therefore, the EEpower pin can and should be used as the system reset to keep all devices reset until the
controller is stable. You may also wish to use 24LC64 EEproms which have a hardware write protect pin on
them.

Appendix C: TICkit 62 Hardware FBasic TICkit

164 Protean Logic Inc.

General
Purpose
or Data
Bus pins

General
Purpose

or Address
Bus pins

General
Purpose
or Addr

Bus pins

General
Purpose
or Data
Bus pins

General
Purpose
or Address
Bus pins

General
Purpose
or Addr
Bus pins

Using the IC instead of the module creates a more compact and less expensive design, so do not be intimidates to venture
into this type of project.

Appendix C: TICkit 62 Hardware FBasic TICkit

Protean Logic 165

Appendix D: TICkit 63 Hardware

D.2 The TICkit 63 Module pin diagram

Appendix D: TICkit 63 Hardware FBASIC TICkit

166 Protean Logic Inc.

D.3 The TICkit 63 and 74 IC pin diagrams

D.4 The TICkit 63 Module Schematic

FBasic TICkit Appendix D: TICkit 63 Hardware

Protean Logic Inc. 167

D.5 The TICkit 63 Project Board Schematic

D.6 The TICkit 63 Single Board Computer Schematic

Appendix D: TICkit 63 Hardware FBasic TICkit

168 Protean Logic Inc.

D.7 The TICkit 63 Laboratory Schematic

D.8 The TICkit 74 Laboratory Schematic

FBasic TICkit Appendix D: TICkit 63 Hardware

Protean Logic Inc. 169

D.9 TICkit 63/74 LAB Design Concepts
The TICkit 63/74 prototyping lab is a small printed circuit board physically attached to a solderless prototyping board.
The PCB has a +5vdc 1 amp power supply which powers the TICkit microprocessor and an RS232 level shifting buffer.
This buffer IC generates +/-10vdc (nominal) which is available for split supply analog prototyping. The idea behind the
laboratory proto-board is to provide all the resources required to experiment with or prototype the majority of types of
TICkit applications. With this goal in mind, the power supply, TICkit processor, socketing for 128K bytes of EEprom,
RS232 buffer, DB9 female connector, and PCAT keyboard connector provide many common elements to TICkit designs.
The 63 row solderless protoboard with 4 column power bus allows the application designer to add circuitry specific to the
application. These additions may include an LCD, A/D chips, power drive electronics, analog conditioning circuits,
switches, visual or audio indicators or a multitude of other electronic components.

The extensive interface library of the TICkit processors coupled with this flexible design platform allow the application
designer, student, or experimenter to quickly realize the essential elements of many designs. In most cases a soldering
iron is not even required. This allows the logic of the design problem to be central focus instead of the physical or
interconnection details and reduces constant re-design and re-research of the same circuit elements.

D.10 TICkit 63/74 LAB Connection Points and Interconnection Methods
The Lab PCB has many small screw socket receptacles which will accept wires or component leads up to approximately
0.015 to 0.025 inches. This means these pins will accept 26 to 23 gauge solid wire ends. These sizes are compatible
with the solderless breadboard. 24 or 26 gauge wire is the ideal.

The Microprocessor sockets will accept either a 40 pin TICkit 74 or a 28 pin TICkit 63. For the most part, the 63 pins are
a subset of the 74 pin assignments, with the 74 simply having addition I/O for A/D converters and another 8 I/O pins.
Both TICkit processors' libraries were written with 16 general purpose I/O pins in mind. These I/O pins are numbered
from 0 to 15 but are usually referred to symbolically by their 8bit port names of address and data (aport and dport)..

In the TICkit63 the 8 I/O pins of the address port (aport) are shared between general purpose use by the internal libraries
and specific hardware use by the internal peripheral circuits of the processor. The user can make an address I/O pin either
have a specific hardware purpose like RS232 background processing or a general I/O purpose like clocking the PCAT
keyboard interface, but not both simultaneously when they require the same I/O pin.

In the TICkit74, the address port and the specific hardware peripheral functions are connected to different pins.
Therefore, there is no conflict between general purpose functions within the TICkit library and the peripheral functions of
the processor. In the 74 the I/O pins of the specific hardware peripheral are collectively referred to as the spport (special
purpose port).

Also, the TICkit 74 has additional I/O lines for performing 8 bit A/D conversions. The pins used for this purpose are
collectively referred to as the voltage measurement port (vport). A/D port may have been a better name but is too easily
confused with the dport (data port) and the aport (address port) nomenclature.

It is sufficient to say that the 63 only has the aport and dport available for I/O with the spport being identical to the aport
in terms of I/O pin assignment. The vport is also available on the TICkit 63 but only one pin (vpin_1) is useable and only
for digital operations not for voltage measurement.

All the resources of the PCB are available through one or more machine screw pin sockets. Simply plug a wire jumper
into the desired pin socket and connect the other end to either a connection row on the solderless protoboard, or to
another pin socket on the PCB.

Appendix D: TICkit 63 Hardware FBasic TICkit

170 Protean Logic Inc.

D.11 TICkit 63/74 LAB PCB and resources available to the application designer

The Diagram above shows most of the connection points for the various resources of the TICkit lab PCB. One thing to
notice is that the EEprom devices have write protect jumpers. Even though the EEprom ICs are designed to allow
writing when the pins are left floating, you may need to jumper the WP connections to ground when
downloading. The internal shorting pattern of the solderless prototype is shown as thicker lines on the drawing above.

In addition to the PCB and protoboard assembly, you have received a small box of pre-cut and pre-stripped wire jumper
and a small bag of electronic components. Below is a list of the electronic components:

1. (1) Miniature Speaker/buzzer
2. (1) 10uf electrolytic capacitor
3. (4) LED indicator lamps
4. (4) 330 ohm resistors (orange, orange, brown)
5. (4) 10K resistors (brown, black, orange)
6. (2) miniature push button switches

7. (1) Software and Manual CD
8. (1) blank layout forms
9. (1) download cable

10. (1) wall transformer power supply
11. (1) 9volt battery clip with 6" wire leads
12. (1) Box of jumper wires

FBasic TICkit Appendix D: TICkit 63 Hardware

Protean Logic Inc. 171

Power Input
>5.6vdc

PCAT
Keyboard
connections

+5vdc (regulated)
Ground (isolated)

PCAT 5-pin
Keyboard
Socket

Regulator input

Voltage Regulator
(for heavy loads Input voltage

should be close to 5.6vdc and a
heat sink may be required.)

Processor
connections

DB9F socket
for RS232

Reset button

Connections for
DB9F socket

(note: pin5 is
internally connected

to ground)

4 EEprom sockets
(note: only one socket

populated in standard lab
assembly)

EE write protect
(jumper to gnd to allow writes
jumper to +5 to protect EE
floating usually allows writes)

RS232 buffer IC
Buffer conections

+9vdc (unregulated)
-9vdc (unregulated)

Download Socket
accepts 2 or 4 pin cables

D.12 TICkit 63/74 Laboratory Pictoral Template (Photocopy for layout worksheet)
Appendix D: TICkit 63 Hardware FBasic TICkit

172 Protean Logic Inc.

The RSB509C-0 and RSB509C-1:
Serial Buffer IC

E.1 RSB509 Product Overview
Protean Logic's RSB509 is an easy to use, low cost IC that buffers RS232 serial data for a host microprocessor. The
RSB509 stores serial data received at the input pin and retransmits the data to the host through the interface pin. The
RSB509 frees the host processor from serial data timing concerns. The real-time complications of interrupt handling are
thus eliminated or reduced. Processors that emulate RS232 hardware via software, like the FBASIC TICkit or the
PARALLAX Basic STAMP, can perform other tasks while the RSB509 buffers serial data. The processor then retrieves
the stored data when it is ready by pulsing the interface pin.

The RSB509 can store 32 bytes of received data. When the host processor is ready to process the data it signals the
RSB509 to retransmit by creating a small pulse on the interface pin. With a TICkit or a STAMP as the host processor, the
program simply places a high on the interface pin before the rs_receive or serin function.

Connecting the RSB509 is easy. Only a few resistors and a crystal or resonator is required. The RSB509 only requires
one I/O connection to the host processor.

The RSB509 version C is Mono-wire compliant and is available in two addresses (0 and 1). NOTE: Thecommand
protocol of version C and later is different from version B

E.2 RSB509 Product Features

1. Small 8-pin plastic DIP package. Requires 4mhz clock source (crystal, resonator or square wave) and pull down
resistors for data, empty, and ready outputs.

2. 32 Byte buffer transparantly receives data and retransmits it to the host when requested by the.
3. Only one host processor pin required to completely interface to RSB509. Mono-wire compliant.
4. Pulse protocol on the interface pin is used to program the RSB509 operating modes and to regulate data transfer.
5. Programmable input baud rates 9600, 4800, 2400, 1200.

Lower baud rates can be achieved by using lower oscillator frequency on the RSB509.
6. Receive input pin programmable for inverted (pull down) or non-inverted (RS232 driver output) signal polarity.
7. Communicates with host at 9600 baud via open drain pin.
8. Host indicates it is ready to receive by bringing the data line high momentarily. Host serial routine makes

interface pin an input which signals the RSB509 to send data.
9. Programmable single byte or burst mode transfer to host.

10. Byte match before buffering programmable option. Used for addressable packet reception.
11. Programmable break required before byte match option.
12. Buffer empty output and buffer full (/ready) output for handshaking and buffer status.

E.3 RSB509C pin diagram

+ 5 vdc power input

Crystal or Clock input

Clock output

Serial Input Pin

FBasic TICkit Appendix E: The RSB509 Buffer

Protean Logic Inc. 173

Ground power input

Serial Output/Interface pin

Buffer empty status output

Ready to receive output

E.4 Example Connection to TICkit Schematic

E.5 Example TICkit Control Program
; Program for RSB509A serial buffering

DEF tic62_c
LIB fbasic.lib
LIB rsb509c.lib

FUNC none main
BEGIN
 ; generate a long pulse on interface pin to
 ; signal initialization to RSB509
 pin_high(pin_d0)
 delay(10)

 =(in_err, pin_in(pin_d0))

 ; interface input is inverted and 9600 baud.
 rs_param_set(rs_invert | rs_9600 | pin_d0)

 ; RSB509 programmed for inverted input at 9600
 rs_send(rsb509_invert | rsb509_baud1)

 ; no match byte used but one could be sent
 ; here if the mode required it
 ; rs_send(' ')

 delay(100)
 REPEAT
 ; generate a quick pulse for each
 ; byte to be read. pin high creates start
 ; of pulse. rs_receive creates end of pulse
 ; when it makes the pin an input.
 pin_high(pin_d0)

 ; pin D0 will be used for input
 rs_param_set(rs_invert | rs_9600 | pin_d0)

 ; read each byte with a short wait
 =(in_val, rs_receive(100, 0b, in_err))
 IF in_err
 ELSE
 rs_param_set(debug_pin)
 con_out_char(in_val)
 ENDIF
 LOOP
ENDFUN

Appendix E: The RSB509 Buffer FBasic TICkit

174 Protean Logic Inc.

E.6 Example connection to parallax STAMPII

E.7 Example control program for a parallax STAMPII
' sample program for RSB509 on STAMP II

inval VAR byte

' generate a 10 ms pulse to signal initialization
HIGH 1
PAUSE 10
INPUT 1

' pin P1 is used for interface to RSB509.
' we are using open, inverted, 9600, 8N1 format
' RSB is programmed for normal (driver level inputs)
' at 9600 baud.
SEROUT 1, 49236, [%00000000]

' no match byte is used but could send a byte here
' if the RSB mode required it
' SEROUT 1, 49236, [" "]

' wait for RSB509 to reset
PAUSE 100

around:
' generate a quick pulse for each byte
' to be read. HIGH creates the start of
' the pulse. SERIN creates the end of the
' pulse when it makes the pin an input
' because the interface pin is pulled low
HIGH 1

' pin P1 is used for input.
' we are using open, inverted, 9600, 8N1 format
' if a byte is not received within 1 ms branch to
' "around" to poll again.
' data will only be displayed when byte is received
SERIN 1, 16390, 1, around, [inval]

' show character received on debug window
DEBUG inval

GOTO around
END

FBasic TICkit Appendix E: The RSB509 Buffer

Protean Logic Inc. 175

The X73 Xtender IC:
I/O Expansion, RAM expansion, RS232 hardware, PWM, and

Stepper Control
F.1 Xtender Product Overview
Protean's I2C Xtender is the easy way to add Input Output capability to the FBasic TICkit micro-controller system. The
Xtender is a specially programmed PIC16C73-20 single chip processor. The Xtender responds to commands on two I2C
pins. These commands control all of the Xtender's resources. Resources include a 5 channel 8bit A/D converter, a
buffered full duplex RS232 port, Two multifunction counters/PWM generators, 128 bytes of SRAM, real time clock,
math lookup table, 8 genreal purpose I/O lines and an IRQ time base.

The Xtender IC comsumes very little power and connects in parallel with the EEproms on the FBasic TICkit. Up to 8
Xtender ICs may be connected to a single FBasic TICkit controller (or any other I2C master device) wiithout confilicting
with any EEproms. Two FBasic functions accomplish all communication with the Xtender. Only the I2C clock and data
lines, the Reset line, Ground, and the Interrupt line are connected to the host processor. The Xtender device requires a
19.6608 Mhz Cryxtal, two 12pf capacitors, and two pull up resistors for the I2C lines. The small number of components
and connections simplifies construction and layout of prototypes and the final product.

Because the Xtender is processor working in the background, concurrent I/O is a simple monolithic solution.

F.2 Xtender X73J-Ix Pin Diagram

F.3 Xtender Product Features
1. 8 general purpose I/O lines plus interrupt output line.
2. General Purpose I/O can drive a unipolar stepper motor. Buffered module generates phase timing.
3. General purpose pins can generate 100hz PWM to implement D/A conversions or pulse trains.
4. I2C command buss uses two wire 400kbps connection to master.
5. 128 bytes internal SRAM for temporary data storage.
6. Single 5v @ 20ma requirement.
7. Real time clock provides time keeping capability.
8. 1/100 second Time Base.
9. 5 Channel, 8bit A/D converter with optional external reference.

10. Full Duplex, 16byte Buffered Serial Port. Programmable baud rates and interrupt protocols enable multi-drop
networking schemes.

11. Two PWM or generators for motors or other PWM control schemes.
12. One 16bit counter with dual capture/compare capability.
13. SIN and ATN Trigonometric lookup tables.

Appendix F: The X73 Xtender FBasic TICkit

176 Protean Logic Inc.

F.4 Xtender Connection and Command (I2C) Protocol
Up to 8 Xtender ICs may be connect to the FBASIC TICkit using the two I2C buss lines of the TICkit. This connection is
shown below.

Each Xtender device on the buss has its own unique address. The protocol diagram below shows the three address bits
used to select each device on the buss. When ordering Xtenders, indicate which buss address is required (0-7).

Xtender I2C Protocol

This command protocol is accomplished in FBASIC with the i2c_write and i2c_read functions. Both functions require a
word parameter where the high byte is the address and the low byte is the command. The i2c_read function returns the
byte sent from the Xtender. The i2c_write function sends the second parameter to the Xtender.

The i2c_read function performs both the 'read command' and 'read current' protocols. If the 8th bit of the addr/comm
word is high, the shorter read current protocol is executed and the command portion of the argument is not sent.

FBasic TICkit Appendix F: The X73 Xtender

Protean Logic Inc. 177

F.5 Xtender Example Schematic and Program

The I2C Xtender has a large body of commands. The following code fragment shows how to read
two A/D channels and might be used with a circuit similar to the one above.

i2c_write(0x80C2, 0x08b)
=(top_volt, i2c_read(0x80C2))
; uses command C2 to control A/D
; 08 turns A/D on selects channel 0
; and uses internal voltage ref

lcd_display(top_volt)
i2c_write(0x80C2, 0x09b)
=(bot_volt, i2c_read(0x80C2))
test_half(top_volt, bot_volt)

; verifies that batteries are sharing
IF <(top_volt, 192b)
 alarm_low()
ENDIF

IF <(top_volt, 128b)
 shut_down()
ENDIF

Appendix F: The X73 Xtender FBasic TICkit

178 Protean Logic Inc.

F.6 Xtender commands
The command table sumarizes the commands that control an Xtender peripheral IC. To form the command address word,
the address contained in the part number must be multiplied by 0x200, added to hexidecimal 0x8000 then added to the
command value shown in the table. For example, If the part number of an Xtender IC is X73J-I1, the final suffex gives
the I2C address as one. To write an ASCII letter 'A' to the RS232 output buffer, the following FBASIC line could be
used:

i2c_write(0x8294w, 'A')

Reading from the RS232 buffer is also easy. In this case assume the part number for the IC is X73C-I7. To read a value
from the buffer the line could be:

=(temp_variable, i2c_read(0x8e94w))

When an I2C read or write function is unable to communicate with an Xtender, the address argument will be cleared. The
following example tests to ensure an Xtender IC acknowleged the command:

=(address_com, 0x8e94w)
i2c_write(address_com, 'A')
IF <=(address_com, 0x00ff)
 handle_error()
ENDIF

F.7 Stepper Driver Module
The stepper driver is designed to control unipolar stepper motors. Four of the general purpose I/O pins (GP4 thru GP7)
are configured as coil control outputs when the stepper module is enabled. GP2 and GP3 are sampled as the limit inputs
if the "go until limit" mode of the stepper module is utilized. (The user must configure GP2 or GP3 as inputs when limits
are used.) The stepper module is double buffered so it holds two stepper movement commands, the current command and
the next command. Each command consists of an 8 bit period per step, and a signed 16 bit count of steps to execute.
When the currenct count reaches zero, the next step command is shifted to the current registers, an interrupt is generated,
and the step command is executed. The period register is in 1/6400 sec units. The stepper module has four modes of
operation. The first is to simply step until the current count reaches zero. The other three modes will step until the current
count is zero, or until one, the other, or both of the GP2 and GP3 limit inputs go to a low level. This is used to implement
limits and initial index searches. Once a limit or terminal count has been reached the next step command will be loaded
and executed in unconditional step mode. A sample stepper circuit using the Xtender is contained at the end of this data
sheet.

F.8 Serial Communications Module
The Xtender implements an intellegent buffered serial port. This port can be configured in one of four modes of
operation. Three of these modes implement different buffering strategies for asynchonous RS232 type communications.
The fourth mode implements a shared wire network packet protocol. This protocol sends 8 byte packets to another
Xtender device with a specified node address. The protocol uses Carrier Sense with Multiple Access combined with
Collision Detection and psuedo random backoff to achieve a master-less network. This means that any node which wishes
to communicate with another simply loads the destination node address, loads the 8 byte message into the transmit buffer
and waits for a response from the Xtender indicating a successful or failed transmission. The Xtender automatically
retries 32 times. Likewise, the Xtender takes care of receiving messages just as easily, by interrupting the controller when
a message has been received. The Xtender will automatically inform other sending nodes if it is busy, and automatically
records the source of the current packet received.

Buffered asynchronous serial simply divides 16 bytes of buffer space among the transmit and receive tasks. Mode 1
buffers the received data 18 deep and buffers the transmitted data 2 deep. Mode 2 buffers the transmitted data 18 deep
and buffers the received data 2 deep. Mode 3 buffers the received data 10 deep and buffers the transmitted data 10 deep.
The Xtender interrupts the controller whenever received data is present and whenever there is space available in the
transmit buffer.

F.9 General Purpose PWM module
Four of the general purpose I/O pins (GP0 thru GP3) can be configured in the Xtender to be 8 bit 100 hz PWM outputs.
This is different from the 10bit dedicated PWM module mentioned below. These outputs are controlled internally by the
Xtender software to be exactly 100 hz signals with a duty cycle between 0 and 255/256. Because the rate of these signals

FBasic TICkit Appendix F: The X73 Xtender

Protean Logic Inc. 179

in known (100 hz), these signals can also be used to control RC type servos as a pulse train. The on time of each signal is
equal to its value multiplied by 1/25600 second. To achieve a duty cycle of 256/256 the pwm control must be turned off
for that output and the pin set to a continuous high level. PWM on GP2 or GP3 will interfere with limit sensing if the
stepper motor module is used in limit sensing mode.

These four PWM outputs can also be used with a capacitor to ground to acheive a rudimentary 8 bit D/A capability.
Assuming the load of on the capacitor is minimum (impedance greater than 10k ohms), the output voltage swing will
range linearly between 0 volt and 1275/256 (4.98) volts. Settling time is between 1/100 and 1/10 second.

F.10 A/D Module
The 5/4 channel A/D capability of the Xtender IC is native to the PIC16C73. Simply enter the A/D mode in the control
register and read the result of the conversion. The conversion takes place at the time of the read. The A/D is fast enough
that the I2C buss is simply halted for a fraction of a I2C byte time to get the conversion result. One of the 5 A/D inputs
can be configured as a voltage reference instead of as an input channel. A reading of 255 will be equal to an input of the
voltage reference. If the reference is selected as internal, a reading of 255 corresponds to Vdd of the Xtender IC.

F.11 16 bit Event Counter or Oscillator based timer
The 16bit Counter/Timer module is also native to the PIC16C73. This 16bit counter can count rising or falling edge
events on pin 11 of the Xtender, or it can internally count Oscillator time cycles. One count equals 1/4915200 second. A
prescaller can also be assigned to divide events or time cycles before the counter to acheive a greater count range.

Two additional pins can be configured to use the 16bit counter/timer for input capture, or for compare output. These
input modules, called the CCP modules can store the count at the time of a rising or falling edge, or can output a high
signal when the 16bit count exceedes a pre-set comparison value. This can be useful for generating square waves or for
timing pulse events.

F.12 CCP modules for 10bit dedicated PWM
The two pins mentioned in the previous section can also be configured in the CCP modules to perform a 10 bit PWM
function. The PWM function uses an internal counter to determine the period and duty cycle of the PWM signal. The
period is determined by loading an 8bit value into the register designated timer 2 and the duty cycle is determined by
setting the CCP register appropriately. See the PIC16C73 documentation or VersaTech BBS for more details on
dedicated PWM and CCP functions

F.13 The Real Time 32 bit seconds counter
The Xtender is programmed to count the number of seconds that have elapsed since either the power was applied to the
device, or since the 32 bit seconds counting register was last set. There is also a 1/100 second counter accessable to the
controller. The 32 bit seconds counter is buffered, so reading the LSB of the count will capture the entire count.
Conversely, when writing a count to the counter, the counter will only be updated after the MSB is written to the Xtender.

F.14 1/100, 1/10, 1, and 10 second time base
The Xtender can generate an interrupt every 1/100, 1/10, 1, or 10 seconds when told to do so. Simply setting the
corresponding bit will enable the time base. When the time next time interval is reached, the cooresponding interrupt flag
bit will be set. If the interrupt enable for this flag is set, the interrupt output pin (pin 6) will be pulled low. The Control ler
must reset the interrupt flag bit immediately to ensure the next interval will be sensed. The Controller may either respond
to interrupts, or simply poll the interrupt flag register.

F.15 Trigonometric Tables
Two trigonometric lookup tables are implemented on the Xtender. A SIN lookup table for the region from 0 degrees to
89.65 degrees is provided with an output range between 0 and 256. An ATN lookup table for the ratio region of 255/256
to 0. These tables obviously require some cooersion by the controller for the specific application.

The SIN table uses an 8 bit angle value scaled between 0 degrees as 0 and 89.65 degrees as 255. The controller will need
to adjust the output for the specific quadrant the SIN or COS is using on the basis of the angle involved. Furthermore, the
output of the table for angles close to 90 degrees will be zero, The controller will need to understand that an output of
zero in these regions is to be interpretted as 256. Most real world applications will already have quadrant and full scale
logic requirements, so these tables should provide a good working basis for most trigonometic uses.

Appendix F: The X73 Xtender FBasic TICkit

180 Protean Logic Inc.

The ATN table uses an 8bit ratio value scaled between 0 for a 0 degree vale and 255/256 which cooresponds to an
angular output of very near 45 degrees. The controller will need to consider the sign and magnitude of the ratio and
adjust the table output for the proper octant. If a ratio is greater than 1, (256 table input), then the recipricol should be
entered into the table and a value of 90 degrees less the table result will be the quadrant one angle. This ATN scheme
avoids the undefined values associated with 90 degrees or the large ratios for tangents of angles between 45 degrees and
90 degrees.

F.16 Static Random Access Memory
128 bytes of SRAM are available for general volitale storage purposes. FBASIC's SEQUENCE and RECORD directives
can be used to allocate and access Xtender SRAM in an organized fashion.

F.17 General Purpose Input and Output
The eight general purpose pins can be used by the stepper module, the general purpose pwm module, or be used simply
as steady state outputs or unlatched inputs. The output is double buffered which assures that pins can be switched
between inputs and outputs without adversely effecting other output pin levels. The outputs can be set absolutly, or two
special commands can be used to set the specified pins high/low while leaving the other pins unchanged. Likewise the
direction of the general purpose pins can be set to input/output for specified pins while leaving the unspecified pins'
directions unchanged.

F.18 Xtender Implementation Limits
The current version of the Xtender has not implemented the CSMA/CD network protocol. Register assignments for the
network can be assumed to be accurate in later releases.

F.19 Coding Example using a Header file
Although the I2C extender is controlled using 16bit numeric commands, it is best not to use these values in your program
directly. This makes the program harder to write and to read. To simplify the control of the Xtender, a file called
"xtn73j.lib" is contained on all revision 5 and later release disks that defines textual names for all of the commands.

The program to below is an example of using the header file and the symbolic constants it contains to make a readable
program. You will also notice the use of the '|' compiler operator which sums the adjacent constants while the program
compiles. This is used extensively with Xtender commands to form a full 16bit command from the xtender device address
and specific commands.

; program to demonstrate xtender RAM used with the SEQUENCE
; directive to create a convenient pool of static symbolic storage

DEF tic57_e LIB fbasic.lib
LIB xtn73e.lib

SEQUENCE 0 xtn_dev0 ; address of sequence begins for device 0
SEQUENCE 0 byte var1 ; variable one
SEQUENCE 0 word var_arr[25] ; word array of 25

FUNC none main
 LOCAL byte trash
BEGIN
 =(trash, i2c_read(xtn_dev0 | xtn_reset))

 ; next line is assigns a value to a RAM location in the Xtender
 i2c_write(var1, 139b)
 con_out(i2c_read(var1))
 =(trash, 25b)
 REP
 --(trash)
 i2c_write(var_arr[to_word(trash)], +(trash, 100b))
 UNTIL ==(trash, 0b)

FBasic TICkit Appendix F: The X73 Xtender

Protean Logic Inc. 181

 =(trash, 0b)
 REP
 con_out(i2c_read(var_arr[to_word(trash)]))
 ++(trash)
 UNTIL ==(trash, 25b)

 REP
 LOOP
ENDFUN

Appendix F: The X73 Xtender FBasic TICkit

182 Protean Logic Inc.

F.20 Xtender command summary. (consult the xtn73_g.lib file for symbolic names)
R/W Command Description of Command
 1 xxxx xxxx Read data from previous command

Execute folloing a repeate start bit.
 x 0aaa aaaa Read/Write RAM at address
 x 1000 0000 Read/Write Port Pins

Writing the Port Pin buffer directly may interfere
with GP PWM or Stepper functions. Port Set
high/lowfunctions are prefered.

 x 1000 0001 Read/Write Port Direction Register
 0 1000 0010 Write A/D control register

byte format = 00cc c1rp
 ccc = channel number
 r = 1 selects RA3 as voltage reference

p = 1 powers the A/D resistive ladders
 1 1000 0010 Read A/D conversion result
 x 1000 0011 Read/ Write Timer 1 control register

byte format = 00pp 00ce
 pp = prescale division (1,2,4,8)
 c = 1 selects external clock, 0 is osc/4
 e = 1 enables timer 1 counting
 x 1000 0100 Read/Write Timer 2 control register

btye format = 0sss sepp
 ssss = postscaler division value
 e = 1 enables timer 2 counting
 pp = prescaler division (1, 4, 16, 16)
 x 1000 0101 Read/Write Timer 2 count register
 x 1000 0110 Read/Write Timer 2 period register
 x 1000 0111 Read/Write Timer 1 count (low byte)

This command captures the count when reading
for

high byte to ensure validity. This command halts
 counting when writing until the high byte is

written.
 x 1000 1000 Read/Write Timer 1 count (high byte)

Writes to this register restart counter 1.
 x 1000 1001 Read/Write Capture-Compare Control 1

byte format = 00rr mmmm
 mmmm = mode as follows
 0000 = CCP 1 off (no function)
 0100 = Capture on every falling edge
 0101 = Capture on every rising edge
 0110 = Capture on 4th rising edge
 0111 = Capture on 16th rising edge
 1000 = Compare, output 1 on match
 1001 = Compare, output 0 on match
 1010 = Compare, interrupt on match
 1011 = Compare, clear tmr1 on match
 11xx = Pulse Width Modulation
 rr = 10 bit resolution low order bits
 keep as 00 for 8bit resolution

 x 1000 1010 Read/Write Capture-Compare Control 2
byte format = 00rr mmmm

 mmmm = mode as follows
 0000 = CCP 2 off (no function)
 0100 = Capture on every falling edge
 0101 = Capture on every rising edge
 0110 = Capture on 4th rising edge
 0111 = Capture on 16th rising edge
 1000 = Compare, output 1 on match
 1001 = Compare, output 0 on match
 1010 = Compare, interrupt on match
 1011 = Compare, Start A/D conv. and clear tmr1
 11xx = Pulse Width Modulation

 x 1000 1011 Read/Write Capt-Comp Reg 1 low byte
 x 1000 1100 Read/Write Capt-Comp Reg 1 high byte
 x 1000 1101 Read/Write Capt-Comp Reg 2 low byte
 x 1000 1110 Read/Write Capt-Comp Reg 2 high byte
 x 1000 1111 Read/Write RTC 1/100 second tic count

Reads from this register capture entire RTC count .

R/W Command Description of Command
 x 1001 0000 Read/Write RTC seconds, byte 0 (LSB)
 x 1001 0001 Read/Write RTC seconds, byte 1
 x 1001 0010 Read/Write RTC seconds, byte 2
 x 1001 0011 Read/Write RTC seconds, byte 3 (MSB)

Writes to this register load the entire RTC count.
 0 1001 0100 Write RS232 transmit buffer.
 1 1001 0100 Read RS232 receive buffer.
 x 1001 0101 Read/Write Interrupt Enable Register 1

byte format as follows:
bit 0 = 1/100 second interrupt
bit 1 = 1/10 second interrupt
bit 2 = 1 second interrupt
bit 3 = 10 second interrupt
bit 4 = RS232 received character
bit 5 = RS232 xmit buffer empty
bit 6 = RS232 net message received
bit 7 = RS232 net message xmitted

 x 1001 0110 Read/Write Interrupt Enable Register 2
bit 0 = Compare interrupt for CCP1
bit 1 = Compare interrupt for CCP2
bit 2 = Current Stepper Sequence Finished
bit 3 = Timer 1 overflow.
bit 4 = RS232 net error (xmit retrys exceeded)

 0 1001 0111 Acknowlege Interrupt 1 and clear
Setting the bit clears the cooresponding Flag bit.
Clear RS232 ints by reading or writing the buffer.

 1 1001 0111 Read Interrupt Flag register 1
Flags int conditions. Same format as enable 1

 0 1001 1000 Acknowlege Interrupt 2 and clear
Clear by setting the cooresponding bit.

 1 1001 1000 Read Interrupt Flag register 2
Flags int. conditions. Same format as enable 2

 x 1001 1001 Read/Write RS232 transmit status
byte format = mpeo cccc
cccc = buffer count
m = xmit buffer mode
p = 1 packet being sent/data being sent
e = xmit buffer is empty
o = overflow (used internally)

 x 1001 1010 Read/Write RS232 receive status
byte format = mpfo cccc
cccc = buffer count
m = receive buffer mode
p = packet received
f = framing error has occured
o = overrun error has occured

 0 1001 1011 Set General Purpose pin output low
Only pins with bits set high will be cleared.

 1 1001 1011 Read Port output buffer (not pin levels).
 0 1001 1100 Set General Purpose pin output high

Only pins with bits set low will be set.
 1 1001 1100 Read Port output buffer (not pin levels).
 0 1001 1101 Set General Purpose pin to output
 1 1001 1101 Read IC Revision Number.
 0 1001 1110 Set General Purpose pin to input
 1 1001 1110 Read IC Revision Number then Reset IC.
 x 1001 1111 Read/Write G. P. PWM and stepper motor control.

Configure 4 GP pins to output pulses with 256
duty levels for PWM at 100 Hz. Configure

 GP4-GP7 pins for unipolar stepper motor phases.
byte format = hlgo pppp
pppp = PWM pin control for GP 0,1,2,3
o = 1 turns step signals on for GP 4,5,6,7
g = 1 execute step command
l = 1 executes steps until GP4 is low
h = 1 executes steps until GP5 is low

FBasic TICkit Appendix F: The X73 Xtender

Protean Logic Inc. 183

R/W Command Description of Command
 x 1010 0000 Read/Write General Purpose pin PWM 0

Pin is high between 0 and 255 intervals.
one interval = 1/25600 second.

 x 1010 0001 Read/Write General Purpose pin PWM 1
 x 1010 0010 Read/Write General Purpose pin PWM 2
 x 1010 0011 Read/Write General Purpose pin PWM 3
 x 1010 0100 Read/Write Current Stepper Count (low)
 x 1010 0101 Read/Write Current Stepper Count (high)
 x 1010 0110 Read/Write Current Stepper Period
 x 1010 0111 Read/Write Next Stepper Count (low)
 x 1010 1000 Read/Write Next Stepper Count (high)
 x 1010 1001 Read/Write Next Stepper Period
 0 1010 1010 Write RS232 Baud Rate Divisor / 64
 1 1010 1010 Read Baud Rate Divisor (div 64 or 16)
 0 1010 1011 Read/Write RS232 Baud Rate Divisor / 16
 1 1010 1011 Read Baud Rate Divisor (0=64, 255=16)
 x 1010 1100 Read/Write SIN angle (0-255 = 0-89.95 degrees)
 x 1010 1101 Read/Write ATN ratio (0-255 = 0 to .9995)
 x 1010 1110 Read/Write Destination Address for Net Packet

Write to this register only when in Net Mode.
Writing to this regiser resets the xmit packet
pointer to the first byte of packet. Reading this
register initiates packet transmission.

 x 1010 1111 Read/Write Source Address of Net Packet
Write to this register only when in Net Mode.
Writing to this register resets the receive packet
pointer to the first byte of packet. Writing this
register enables additional packet reception.

R/W Command Description of Command
 x 1011 0000 Read/Write Network Node Address

This is the Identification for this device on a Net.
Values of 1 to 127 are suggested for upward
compatibility with variable length packets.

 x 1011 0001 Read/Write Network Status Register. Writing to
this register may produce unpredictable results.

Byte Format = ixds a00w
i = Ignore activity in this packet
x = Transmitting packet

 d = Data/ Header info
s = Source/Dest or Checksum/Data
a = Acknowlege byte

 w = waiting for reception of data
 x 1011 0010 Not Implemented
 x 1011 0011 Not Implemented
 x 1011 0100 Not Implemented
 x 1011 0101 Not Implemented
 x 1011 0110 Not Implemented
 x 1011 0111 Not Implemented
 x 1011 1000 Not Implemented
 x 1011 1001 Not Implemented
 x 1011 1010 Not Implemented
 x 1011 1011 Not Implemented
 x 1011 1100 Not Implemented
 x 1011 1101 Not Implemented
 x 1011 1110 Not Implemented
 x 1011 1111 Not Implemented

F.21 Sample Program and Schematic

The Schematic above can be used with the following program to implement a simple stepper motor control system. The
TICkit specified in this example is a TICkit 57 but all concepts are applicable to all the TICkits.

; sample program to demonstrate control of a
; stepper motor with an I2C xtender IC.

DEF tic57_e
LIB fbasic.lib

LIB xtn73g.lib ; include xtender defines
LIB constrin.lib

Appendix F: The X73 Xtender FBasic TICkit

184 Protean Logic Inc.

GLOBAL long step_com
ALIAS byte step_comhi step_com 1
ALIAS byte step_comlo step_com 0

FUNC none main
BEGIN
 delay(10)
 con_string("Reseting Xtender: revision ")
 con_out(i2c_read(xtn_dev0 | xtn_reset))
 con_string("\r\l")
 ; initializing stepper motor includes programming sequences and stepping
 ; backwards until a limit switch closes or until max steps is reached
 ; normally a micro-switch or optical transistor would shunt GP 2 to
 ; ground when the motor moves a mechanism to a reference position
 con_string("Initializing Stepper Motor\r\l")
 i2c_write(xtn_dev0 | xtn_gp_cont, xtn_stepen)
 ; enable stepper outputs
 delay(500)
 i2c_write(xtn_dev0 | xtn_step_curlow, 0b)
 ; setup current
 i2c_write(xtn_dev0 | xtn_step_curhigh, 15b)
 ; for 15*256 steps
 i2c_write(xtn_dev0 | xtn_step_curper, 16b)
 ; 16/6400 sec per step
 i2c_write(xtn_dev0 | xtn_step_nextlow, 0b)
 ; setup next sequence as 0
 i2c_write(xtn_dev0 | xtn_step_nexthigh, 0b)
 ; steps, halts motor for
 i2c_write(xtn_dev0 | xtn_step_nextper, 0b)
 ; next command
 i2c_write(xtn_dev0 | xtn_gp_cont, xtn_stepen | xtn_steplo)

 WHILE and(0y11100000b, i2c_read(xtn_dev0 | xtn_gp_cont))
 delay(10) ; TICkit could be doing other
 ; useful stuff here
 LOOP

 REP
 con_string("Enter step command (-32000 to 32000): ")
 =(step_com, con_in_long(0xffffw))
 con_string(" Executing\r\l")
 i2c_write(xtn_dev0 | xtn_step_curlow, step_comlo) ; setup
 i2c_write(xtn_dev0 | xtn_step_curhigh, step_comhi) ; for 15*256
 i2c_write(xtn_dev0 | xtn_step_curper, 16b)
 ; 16/6400 sec per step
 i2c_write(xtn_dev0 | xtn_gp_cont, xtn_stepen | xtn_stepgo)
 WHILE and(0y11100000b, i2c_read(xtn_dev0 | xtn_gp_cont))
 delay(10)
 ; TICkit could be doing other
 ; useful stuff here
 LOOP
 UNTIL ==(step_com, 0b)

 REP
 LOOP
ENDFUN

FBasic TICkit Appendix F: The X73 Xtender

Protean Logic Inc. 185

B
Buss connection, 94, 128

Wiring Diagram, 50

C
CMOS logic IC

74HC00, 57
74HC138, 38
74HC151, 38
74HC74, 57

Compiler, 138

D
Debug, 133

Break Points, 68
Debugging, 119

Breakpoints, 68
Watchpoints, 74

Development
ACQUIRE.EXE, 22
Console, 13, 105, 144
Cycle, 10

Downloading, 3, 144

E
EEprom, 17, 89, 119, 148

Allocation, 17, 67
Arrays, 17
Initial Values, 71
Strings, 16
Structures, 17, 69

Errors
Connecting, 10
Hidden Sources, 19

F
FBasic

! (partial field), 18
@ (field connecter), 17
~ (Line extension), 15, 18
Constants, 15, 16, 103
escape sequences, 15
exit_value, 18, 20, 22, 69, 72, 83

Expressions, 13
function overloading, 24
Line Labels, 15
Syntax, 14
Text strings, 16
Variable Scope, 18
Variables, 18

Fixed Point Arithmetic, 54
Functions

- (change sign), 78
-- (decrement), 23, 78
- (subtraction), 77, 78, 89
% (remainder), 79
* (multiplication), 79
/ (division), 77, 79
+ (addition], 18, 78, 81
++ (increment], 12, 22, 23, 78, 92
< (less than), 84, 85
<< (shift left), 22, 82
<= (less or equal to), 84
<> (not equal to], 12, 84
= (assignment], 12, 22, 76
== (equal to), 20, 22, 23, 83, 103
> (greater than), 81, 84, 85
>= (greater or equal to), 83
>> (shift right), 82
and, 21, 81, 83
aport_get, 86
aport_set, 86
array_byte, 91
array_long, 92
array_size, 92
array_word, 91
atris_get, 87
atris_set, 87
b_and, 81
b_clear, 82
b_not, 81
b_or, 81
b_set, 81
b_test, 82
b_xor, 81
buss_read, 95
buss_setup, 50, 94
buss_write, 95
ccp1_cont_get, 124
ccp1_cont_set, 123, 124
ccp1_reg_get, 124
ccp1_reg_set, 124
con_fmt, 55, 107
con_in_byte, 105, 106
con_in_char, 105
con_in_long, 106
con_in_word, 106

con_out, 107
con_out_char, 12, 77, 81, 92, 106
con_string, 107
con_test, 105
cycles, 27, 88, 89
debug_off, 120
debug_on, 120
delay, 23, 26, 96
dport_get, 86
dport_set, 86
dtris_get, 87
dtris_set, 87
ee_read, 12, 90, 91
ee_read_long, 91
ee_read_word, 91
ee_write, 91
i2c_read, 93
i2c_write, 93
int_cont_get, 120
int_cont_set, 120, 126
int_flag_get, 121
int_flag_set, 121
int_mask_get, 121, 122
int_mask_set, 121, 122
Irq_off, 120
Irq_on, 120
lcd_cont_wr, 95
lcd_data_wr, 95
lcd_fmt, 95
lcd_init4, 95
lcd_init8, 95
lcd_out, 95
lcd_string, 95
not, 81
or, 23, 81, 85
pin_high, 21, 23, 32, 85
Pin_in, 21, 27, 83, 86
pin_low, 21, 23, 83, 85
pulse_in_high, 88
pulse_in_low, 87
pulse_out_high, 21, 83, 88
pulse_out_low, 88
rc_measure, 89, 146, 147
reset, 120, 121, 122, 123, 124, 125
rs_break, 100, 145
rs_delay, 102
rs_fmt, 103
rs_param_get, 100
rs_param_set, 12, 23, 81, 99, 100, 103
rs_recblock, 101, 145
rs_receive, 23, 101
rs_send, 23, 101
rs_stop_chek, 23, 103
rs_stop_ignore, 103
rs_string, 102

rtcc_count, 97
rtcc_ext_fall, 97
rtcc_ext_rise, 97
rtcc_get, 96
rtcc_int, 96
rtcc_int_16, 97
rtcc_int_256, 23, 97
rtcc_set, 23, 96
rtcc_wait, 23, 97
sleep, 96
ssp_addr_get, 125
ssp_addr_set, 125
ssp_buffer_get, 125
ssp_buffer_set, 125
ssp_cont_get, 125
ssp_cont_set, 124
ssp_status_get, 125
tmr1_cont_get, 123
tmr1_cont_set, 122
tmr1_count_get, 123
tmr1_count_set, 123
tmr2_cont_get, 123
tmr2_cont_set, 123
tmr2_count_get, 123
tmr2_count_set, 123
tmr2_period_get, 123
tmr2_period_set, 123
to_long, 77
to_word, 77
trunc_byte, 77
trunc_word, 77
xor, 81

I
I/O

analog, 27
CCP, 28, 56
Current Gain, 31
Feedback, 34
general purpose, 25
H-bridge, 33
motor control, 31
relay control, 31

Input Sensing
Key Matrix, 37
optical, 34
Pulse Measurement, 56
quadrature encoding, 34
RPM, 58
Switches, 35
Timer1, 57, 58

Interrupts, 119, 122

K
Key Words, 24, 66

ALIAS, 66, 67, 72
ALLOCATE, 17, 66, 67, 90, 92
ANOTE, 66, 68
BEGIN, 12, 13
BREAK, 66, 68
CALL, 67, 68
DEFINE, 12, 22, 66, 68
ELSE, 23, 67
ELSEIF, 67
ENDFUNCTION, 12, 66
ENDIF, 22, 67
ENDOPERATION, 66
ENDRECORD, 66
EQUIVALENT, 66
EXIT, 67, 68
FIELD, 17, 66, 69
FUNCTION, 12, 23, 66, 69, 72
GLOBAL, 12, 18, 66, 69
GOSUB, 67, 69
GOTO, 15, 67, 70
IF, 22, 67, 70
IFDEFINED, 66, 70
IFNOTDEFINED, 66
INCLUDE, 66, 70
INITIAL, 17, 66, 71
INTERNALS, 71
KEYWORD, 66, 71
LIBRARY, 12, 14, 22, 66, 71
LOCAL, 14, 18, 23, 66, 71, 77
LOOP, 12, 23, 67
MEMORY, 72
OPERATION, 66, 72
PARAMETER, 14, 23, 66
PROTOTYPE, 66, 72
RECORD, 17, 66, 73, 92
REPEAT, 12, 23, 67, 73, 89
RETURN, 67, 73
SEQUENCE, 18, 66, 67, 73
SIZE, 66, 74
SKIP, 67, 73
STOP, 13, 67, 73
TYPE, 66, 74
UNTIL, 13, 67, 81
VECTOR, 74
WATCH, 74
WHILE, 12, 13, 23, 67, 74

L
Lcd

Buss, 94
Commands, 50
Functions, 20, 50, 94, 96
Modules, 50

LED, 25
blinking, 25
Multiplexing, 47
polarity, 25

Libraries, 14, 23, 70, 71
Device Drivers, 21
Standard, 75

N
Network

Multi-drop, 22, 145

P
Peripheral ICs, 40

44780, 50
DS1621, 43
LTC1298, 21, 56
MAX232, 59
MAX7219, 47
NEMA Instruments, 59
RSB509, 62
Xtender IC, 40

Power, 149
Connection, 148
savings, 96
Supply, 27

PWM
continuous, 28
efficiency, 29
simulated, 27
Xtender, 40

R
RAM, 18, 67, 69

Arrays, 19, 69
Stack, 19, 70, 71, 73

RS232, 144
RTCC, 23, 96

S
Serial Interfaces

3-wire, 47
EEprom I2C, 41
I2C, 40
I2C simulation, 42
RS232, 59
RS232 pin assignments, 60

SIZE, 66, 68, 74, 76
byte, 23
long, 24
none, 23
word, 23

T
Tech Support

BBS, 24
Web page, 24

X
Xtender, 40

